Cargando…
Navigation in Real-World Environments: New Opportunities Afforded by Advances in Mobile Brain Imaging
A central question in neuroscience and psychology is how the mammalian brain represents the outside world and enables interaction with it. Significant progress on this question has been made in the domain of spatial cognition, where a consistent network of brain regions that represent external space...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6141718/ https://www.ncbi.nlm.nih.gov/pubmed/30254578 http://dx.doi.org/10.3389/fnhum.2018.00361 |
_version_ | 1783355756400082944 |
---|---|
author | Park, Joanne L. Dudchenko, Paul A. Donaldson, David I. |
author_facet | Park, Joanne L. Dudchenko, Paul A. Donaldson, David I. |
author_sort | Park, Joanne L. |
collection | PubMed |
description | A central question in neuroscience and psychology is how the mammalian brain represents the outside world and enables interaction with it. Significant progress on this question has been made in the domain of spatial cognition, where a consistent network of brain regions that represent external space has been identified in both humans and rodents. In rodents, much of the work to date has been done in situations where the animal is free to move about naturally. By contrast, the majority of work carried out to date in humans is static, due to limitations imposed by traditional laboratory based imaging techniques. In recent years, significant progress has been made in bridging the gap between animal and human work by employing virtual reality (VR) technology to simulate aspects of real-world navigation. Despite this progress, the VR studies often fail to fully simulate important aspects of real-world navigation, where information derived from self-motion is integrated with representations of environmental features and task goals. In the current review article, we provide a brief overview of animal and human imaging work to date, focusing on commonalties and differences in findings across species. Following on from this we discuss VR studies of spatial cognition, outlining limitations and developments, before introducing mobile brain imaging techniques and describe technical challenges and solutions for real-world recording. Finally, we discuss how these advances in mobile brain imaging technology, provide an unprecedented opportunity to illuminate how the brain represents complex multifaceted information during naturalistic navigation. |
format | Online Article Text |
id | pubmed-6141718 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-61417182018-09-25 Navigation in Real-World Environments: New Opportunities Afforded by Advances in Mobile Brain Imaging Park, Joanne L. Dudchenko, Paul A. Donaldson, David I. Front Hum Neurosci Neuroscience A central question in neuroscience and psychology is how the mammalian brain represents the outside world and enables interaction with it. Significant progress on this question has been made in the domain of spatial cognition, where a consistent network of brain regions that represent external space has been identified in both humans and rodents. In rodents, much of the work to date has been done in situations where the animal is free to move about naturally. By contrast, the majority of work carried out to date in humans is static, due to limitations imposed by traditional laboratory based imaging techniques. In recent years, significant progress has been made in bridging the gap between animal and human work by employing virtual reality (VR) technology to simulate aspects of real-world navigation. Despite this progress, the VR studies often fail to fully simulate important aspects of real-world navigation, where information derived from self-motion is integrated with representations of environmental features and task goals. In the current review article, we provide a brief overview of animal and human imaging work to date, focusing on commonalties and differences in findings across species. Following on from this we discuss VR studies of spatial cognition, outlining limitations and developments, before introducing mobile brain imaging techniques and describe technical challenges and solutions for real-world recording. Finally, we discuss how these advances in mobile brain imaging technology, provide an unprecedented opportunity to illuminate how the brain represents complex multifaceted information during naturalistic navigation. Frontiers Media S.A. 2018-09-11 /pmc/articles/PMC6141718/ /pubmed/30254578 http://dx.doi.org/10.3389/fnhum.2018.00361 Text en Copyright © 2018 Park, Dudchenko and Donaldson. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Park, Joanne L. Dudchenko, Paul A. Donaldson, David I. Navigation in Real-World Environments: New Opportunities Afforded by Advances in Mobile Brain Imaging |
title | Navigation in Real-World Environments: New Opportunities Afforded by Advances in Mobile Brain Imaging |
title_full | Navigation in Real-World Environments: New Opportunities Afforded by Advances in Mobile Brain Imaging |
title_fullStr | Navigation in Real-World Environments: New Opportunities Afforded by Advances in Mobile Brain Imaging |
title_full_unstemmed | Navigation in Real-World Environments: New Opportunities Afforded by Advances in Mobile Brain Imaging |
title_short | Navigation in Real-World Environments: New Opportunities Afforded by Advances in Mobile Brain Imaging |
title_sort | navigation in real-world environments: new opportunities afforded by advances in mobile brain imaging |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6141718/ https://www.ncbi.nlm.nih.gov/pubmed/30254578 http://dx.doi.org/10.3389/fnhum.2018.00361 |
work_keys_str_mv | AT parkjoannel navigationinrealworldenvironmentsnewopportunitiesaffordedbyadvancesinmobilebrainimaging AT dudchenkopaula navigationinrealworldenvironmentsnewopportunitiesaffordedbyadvancesinmobilebrainimaging AT donaldsondavidi navigationinrealworldenvironmentsnewopportunitiesaffordedbyadvancesinmobilebrainimaging |