Cargando…
Early Findings on Functional Connectivity Correlates of Behavioral Outcomes of Brain-Computer Interface Stroke Rehabilitation Using Machine Learning
The primary goal of this work was to apply data-driven machine learning regression to assess if resting state functional connectivity (rs-FC) could estimate measures of behavioral domains in stroke subjects who completed brain-computer interface (BCI) intervention for motor rehabilitation. The study...
Autores principales: | Mohanty, Rosaleena, Sinha, Anita M., Remsik, Alexander B., Dodd, Keith C., Young, Brittany M., Jacobson, Tyler, McMillan, Matthew, Thoma, Jaclyn, Advani, Hemali, Nair, Veena A., Kang, Theresa J., Caldera, Kristin, Edwards, Dorothy F., Williams, Justin C., Prabhakaran, Vivek |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6142044/ https://www.ncbi.nlm.nih.gov/pubmed/30271318 http://dx.doi.org/10.3389/fnins.2018.00624 |
Ejemplares similares
-
Machine Learning Classification to Identify the Stage of Brain-Computer Interface Therapy for Stroke Rehabilitation Using Functional Connectivity
por: Mohanty, Rosaleena, et al.
Publicado: (2018) -
Behavioral Outcomes Following Brain–Computer Interface Intervention for Upper Extremity Rehabilitation in Stroke: A Randomized Controlled Trial
por: Remsik, Alexander B., et al.
Publicado: (2018) -
Ipsilesional Mu Rhythm Desynchronization and Changes in Motor Behavior Following Post Stroke BCI Intervention for Motor Rehabilitation
por: Remsik, Alexander B., et al.
Publicado: (2019) -
Dose-response relationships using brain–computer interface technology impact stroke rehabilitation
por: Young, Brittany M., et al.
Publicado: (2015) -
Brain–Computer Interface Training after Stroke Affects Patterns of Brain–Behavior Relationships in Corticospinal Motor Fibers
por: Young, Brittany M., et al.
Publicado: (2016)