Cargando…
The diagnostic value of [(18)F]-FDG-PET/CT in assessment of radiation renal injury in Tibet minipigs model
BACKGROUND: Radiation-induced kidney damage can severely affect renal function, and have a serious impact on glucose reabsorption. Fluoro-2-deoxyglucose positron emission tomography (FDG-PET) is routinely utilized for metabolic imaging of glucose utilization. In this study, we are trying to assess t...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6142350/ https://www.ncbi.nlm.nih.gov/pubmed/30223848 http://dx.doi.org/10.1186/s12967-018-1626-0 |
Sumario: | BACKGROUND: Radiation-induced kidney damage can severely affect renal function, and have a serious impact on glucose reabsorption. Fluoro-2-deoxyglucose positron emission tomography (FDG-PET) is routinely utilized for metabolic imaging of glucose utilization. In this study, we are trying to assess the diagnostic value of (18)F-FDG-PET/CT on measuring hyperacute effect of total body irradiation (TBI) on the kidneys. METHODS: Forty-eight Tibet minipigs were treated by TBI of different dosages using an 8-MV X-ray linear accelerator. Whole-body (18)F-FDG-PET/CT was performed at 6, 24 and 72 h followed by histologic examination, blood samples’ and renal function analysis. RESULTS: The uptake of (18)F-FDG was significantly different between 11/14 Gy dose groups and control group, the standard Uptake Values reached a maximal level at 72 h after 14-Gy TBI treatment. At doses over 8 Gy, histological observation showed formation of tube casts, degeneration, necrosis of tubular cells, inflammatory cell infiltration and dilatation of the mitochondria of tubule cells. Renal function analysis confirmed the changes in blood urea nitrogen and creatinine levels at various dosages and time intervals. Immunohistochemistry and western blot results indicate that the expression levels of IL-10 and TNF-α proteins were positively correlated with radiation dose up to 8 Gy. CONCLUSIONS: (18)F-FDG PET/CT can reflect pathological changes in kidneys and it may be a useful tool for rapid and non-invasive assessment in cases of suspected radiation-induced kidney damage. |
---|