Cargando…
Data-driven human transcriptomic modules determined by independent component analysis
BACKGROUND: Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of over half a million human microarray samples in the Gene Expression Omnibus (GEO) has enabled us to better characterize biological processes at the molecular level. However, transcriptomic a...
Autores principales: | Zhou, Weizhuang, Altman, Russ B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6142401/ https://www.ncbi.nlm.nih.gov/pubmed/30223787 http://dx.doi.org/10.1186/s12859-018-2338-4 |
Ejemplares similares
-
Imputing gene expression to maximize platform compatibility
por: Zhou, Weizhuang, et al.
Publicado: (2017) -
High Resolution Prediction of Calcium-Binding Sites
in 3D Protein Structures Using FEATURE
por: Zhou, Weizhuang, et al.
Publicado: (2015) -
Determining the optimal number of independent components for reproducible transcriptomic data analysis
por: Kairov, Ulykbek, et al.
Publicado: (2017) -
Optimal dimensionality selection for independent component analysis of transcriptomic data
por: McConn, John Luke, et al.
Publicado: (2021) -
Bacterial adaptation during chronic infection revealed by independent component analysis of transcriptomic data
por: Yang, Lei, et al.
Publicado: (2011)