Cargando…
A document level neural model integrated domain knowledge for chemical-induced disease relations
BACKGROUND: The effective combination of texts and knowledge may improve performances of natural language processing tasks. For the recognition of chemical-induced disease (CID) relations which may span sentence boundaries in an article, although existing CID systems explored the utilization for kno...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6142695/ https://www.ncbi.nlm.nih.gov/pubmed/30223767 http://dx.doi.org/10.1186/s12859-018-2316-x |
_version_ | 1783355876562698240 |
---|---|
author | Zheng, Wei Lin, Hongfei Liu, Xiaoxia Xu, Bo |
author_facet | Zheng, Wei Lin, Hongfei Liu, Xiaoxia Xu, Bo |
author_sort | Zheng, Wei |
collection | PubMed |
description | BACKGROUND: The effective combination of texts and knowledge may improve performances of natural language processing tasks. For the recognition of chemical-induced disease (CID) relations which may span sentence boundaries in an article, although existing CID systems explored the utilization for knowledge bases, the effects of different knowledge on the identification of a special CID haven’t been distinguished by these systems. Moreover, systems based on neural network only constructed sentence or mention level models. RESULTS: In this work, we proposed an effective document level neural model integrated domain knowledge to extract CID relations from biomedical articles. Basic semantic information of an article with respect to a special CID candidate pair was learned from the document level sub-network module. Furthermore, knowledge attention depending on the representation of the article was proposed to distinguish the influences of different knowledge on the special CID pair and then the final representation of knowledge was formed by aggregating weighed knowledge. Finally, the integrated representations of texts and knowledge were passed to a softmax classifier to perform the CID recognition. Experimental results on the chemical-disease relation corpus proposed by BioCreative V show that our proposed system integrated knowledge achieves a good overall performance compared with other state-of-the-art systems. CONCLUSIONS: Experimental analyses demonstrate that the introduced attention mechanism on domain knowledge plays a significant role in distinguishing influences of different knowledge on the judgment for a special CID relation. |
format | Online Article Text |
id | pubmed-6142695 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-61426952018-09-21 A document level neural model integrated domain knowledge for chemical-induced disease relations Zheng, Wei Lin, Hongfei Liu, Xiaoxia Xu, Bo BMC Bioinformatics Research Article BACKGROUND: The effective combination of texts and knowledge may improve performances of natural language processing tasks. For the recognition of chemical-induced disease (CID) relations which may span sentence boundaries in an article, although existing CID systems explored the utilization for knowledge bases, the effects of different knowledge on the identification of a special CID haven’t been distinguished by these systems. Moreover, systems based on neural network only constructed sentence or mention level models. RESULTS: In this work, we proposed an effective document level neural model integrated domain knowledge to extract CID relations from biomedical articles. Basic semantic information of an article with respect to a special CID candidate pair was learned from the document level sub-network module. Furthermore, knowledge attention depending on the representation of the article was proposed to distinguish the influences of different knowledge on the special CID pair and then the final representation of knowledge was formed by aggregating weighed knowledge. Finally, the integrated representations of texts and knowledge were passed to a softmax classifier to perform the CID recognition. Experimental results on the chemical-disease relation corpus proposed by BioCreative V show that our proposed system integrated knowledge achieves a good overall performance compared with other state-of-the-art systems. CONCLUSIONS: Experimental analyses demonstrate that the introduced attention mechanism on domain knowledge plays a significant role in distinguishing influences of different knowledge on the judgment for a special CID relation. BioMed Central 2018-09-17 /pmc/articles/PMC6142695/ /pubmed/30223767 http://dx.doi.org/10.1186/s12859-018-2316-x Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Zheng, Wei Lin, Hongfei Liu, Xiaoxia Xu, Bo A document level neural model integrated domain knowledge for chemical-induced disease relations |
title | A document level neural model integrated domain knowledge for chemical-induced disease relations |
title_full | A document level neural model integrated domain knowledge for chemical-induced disease relations |
title_fullStr | A document level neural model integrated domain knowledge for chemical-induced disease relations |
title_full_unstemmed | A document level neural model integrated domain knowledge for chemical-induced disease relations |
title_short | A document level neural model integrated domain knowledge for chemical-induced disease relations |
title_sort | document level neural model integrated domain knowledge for chemical-induced disease relations |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6142695/ https://www.ncbi.nlm.nih.gov/pubmed/30223767 http://dx.doi.org/10.1186/s12859-018-2316-x |
work_keys_str_mv | AT zhengwei adocumentlevelneuralmodelintegrateddomainknowledgeforchemicalinduceddiseaserelations AT linhongfei adocumentlevelneuralmodelintegrateddomainknowledgeforchemicalinduceddiseaserelations AT liuxiaoxia adocumentlevelneuralmodelintegrateddomainknowledgeforchemicalinduceddiseaserelations AT xubo adocumentlevelneuralmodelintegrateddomainknowledgeforchemicalinduceddiseaserelations AT zhengwei documentlevelneuralmodelintegrateddomainknowledgeforchemicalinduceddiseaserelations AT linhongfei documentlevelneuralmodelintegrateddomainknowledgeforchemicalinduceddiseaserelations AT liuxiaoxia documentlevelneuralmodelintegrateddomainknowledgeforchemicalinduceddiseaserelations AT xubo documentlevelneuralmodelintegrateddomainknowledgeforchemicalinduceddiseaserelations |