Cargando…

Longitudinal monitoring of Culicoides in Belgium between 2007 and 2011: local variation in population dynamics parameters warrant cautious use of monitoring data

BACKGROUND: Several European countries suffered important economic losses during the past decade due to the emergence of bluetongue and Schmallenberg viruses. Both are viruses of veterinary importance and are spread by Culicoides spp. This triggered many European countries to start Culicoides popula...

Descripción completa

Detalles Bibliográficos
Autores principales: Sohier, Charlotte, Deblauwe, Isra, De Deken, Reginald, Madder, Maxime, Fassotte, Christiane, Losson, Bertrand, De Regge, Nick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6142705/
https://www.ncbi.nlm.nih.gov/pubmed/30223878
http://dx.doi.org/10.1186/s13071-018-3082-3
Descripción
Sumario:BACKGROUND: Several European countries suffered important economic losses during the past decade due to the emergence of bluetongue and Schmallenberg viruses. Both are viruses of veterinary importance and are spread by Culicoides spp. This triggered many European countries to start Culicoides population monitoring. Recently a one year monitoring study at 16 sites in Belgium revealed that important variation existed in Culicoides abundance and species diversity between collection sites. In order to analyze whether this variation is consistent over years, a detailed analysis of monitoring data collected at seven locations in Belgium between 2007 and 2011 was performed in this study. At all locations, biting midges were collected with OVI black light traps set-up in close proximity to livestock. RESULTS: In total, 42 different Culicoides species were morphologically identified. Species of the subgenus Avaritia represented 83% of all collected midges. Nevertheless, important differences in species composition were found between sites. Furthermore, statistical differences between sites were found for the total and maximum annual abundance, showing that a consistent higher or lower number of Culicoides could be collected depending on the selected collection site. Yearly, up to 16 and 30-fold differences in total and maximum annual abundances between sites, respectively, were found. Also the month in which most Culicoides were collected varied greatly between years, both at local (from May to October) and country level [May (2008), June (2010), July (2009), August (2011), October (2007)]. Finally, the average vector-free period over all sites and years was 173 days and could roughly be defined between November and the end of April. Interestingly, important yearly variations of up to two months in the duration of the vector-free period were found between the studied collection sites. In contrast to the abundance parameters, no specific sites could however be identified where monitoring consistently showed shorter or longer vector-free periods. CONCLUSIONS: In conclusion, our results show that the selection of collection sites for Culicoides monitoring, even in a small country such as Belgium, strongly influences abundance parameters and that yearly variation in seasonality occurs. This emphasizes that care should be taken when using such parameters in risk assessments for transmission of Culicoides-borne diseases and that more clear and strict guidelines for Culicoides monitoring should be considered when monitoring data are used for legislative purposes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13071-018-3082-3) contains supplementary material, which is available to authorized users.