Cargando…

Hyperspectral Imaging of the Hemodynamic and Metabolic States of the Exposed Cortex: Investigating a Commercial Snapshot Solution

Hyperspectral imaging (HSI) systems have the potential to retrieve in vivo hemodynamic and metabolic signals from the exposed cerebral cortex. The use of multiple narrow wavelength bands in the near infrared (NIR) range theoretically allows not only to image brain tissue oxygenation and hemodynamics...

Descripción completa

Detalles Bibliográficos
Autores principales: Giannoni, Luca, Lange, Frédéric, Davies, Andrew L., Dua, Alisha, Gustavson, Britta, Smith, Kenneth J., Tachtsidis, Ilias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6142854/
https://www.ncbi.nlm.nih.gov/pubmed/30178317
http://dx.doi.org/10.1007/978-3-319-91287-5_3
Descripción
Sumario:Hyperspectral imaging (HSI) systems have the potential to retrieve in vivo hemodynamic and metabolic signals from the exposed cerebral cortex. The use of multiple narrow wavelength bands in the near infrared (NIR) range theoretically allows not only to image brain tissue oxygenation and hemodynamics via mapping of hemoglobin concentration changes, but also to directly quantify cerebral metabolism via measurement of the redox states of mitochondrial cytochrome-c-oxidase (CCO). The aim of this study is to assess the possibility of performing hyperspectral imaging of in vivo cerebral oxyhemoglobin (HbO(2)), deoxyhemoglobin (HHb) and oxidized CCO (oxCCO) using commercially available HSI devices. For this reason, a hyperspectral snapshot solution based on Cubert GmbH technology (S185 FireflEYE camera) has been tested on the exposed cortex of mice during normoxic, hypoxic and hyperoxic conditions. The system allows simultaneous acquisition of 138 wavelength bands between 450 and 998 nm, with spectral sampling and resolution of ~4 to 8 nm. From the hyperspectral data, relative changes in concentration of hemoglobin and oxCCO are estimated and hemodynamic and metabolic maps of the imaged cortex are calculated for two different NIR spectral ranges. Spectroscopic analysis at particular regions of interest is also performed, showing typical oxygen-dependent hemodynamic responses. The results highlight some of the potentials of the technology, but also the limitations of the tested commercial solution for such specific application, in particular regarding spatial resolution.