Cargando…
Deep neural networks for accurate predictions of crystal stability
Predicting the stability of crystals is one of the central problems in materials science. Today, density functional theory (DFT) calculations remain comparatively expensive and scale poorly with system size. Here we show that deep neural networks utilizing just two descriptors—the Pauling electroneg...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143552/ https://www.ncbi.nlm.nih.gov/pubmed/30228262 http://dx.doi.org/10.1038/s41467-018-06322-x |