Cargando…
Deep neural networks for accurate predictions of crystal stability
Predicting the stability of crystals is one of the central problems in materials science. Today, density functional theory (DFT) calculations remain comparatively expensive and scale poorly with system size. Here we show that deep neural networks utilizing just two descriptors—the Pauling electroneg...
Autores principales: | Ye, Weike, Chen, Chi, Wang, Zhenbin, Chu, Iek-Heng, Ong, Shyue Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143552/ https://www.ncbi.nlm.nih.gov/pubmed/30228262 http://dx.doi.org/10.1038/s41467-018-06322-x |
Ejemplares similares
-
DeepCAPE: A Deep Convolutional Neural Network for the Accurate Prediction of Enhancers
por: Chen, Shengquan, et al.
Publicado: (2021) -
Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na(3)PS(4) Superionic Conductor
por: Chu, Iek-Heng, et al.
Publicado: (2016) -
Random Forest Models for Accurate Identification of Coordination Environments from X-Ray Absorption Near-Edge Structure
por: Zheng, Chen, et al.
Publicado: (2020) -
Accurate brain age prediction with lightweight deep neural networks
por: Peng, Han, et al.
Publicado: (2021) -
Deep convolutional neural networks for accurate somatic mutation detection
por: Sahraeian, Sayed Mohammad Ebrahim, et al.
Publicado: (2019)