Cargando…

Improved high temperature radiation damage tolerance in a three-phase ceramic with heterointerfaces

Radiation damage tolerance for a variety of ceramics at high temperatures depends on the material’s resistance to nucleation and growth of extended defects. Such processes are prevalent in ceramics employed for space, nuclear fission/fusion and nuclear waste environments. This report shows that rand...

Descripción completa

Detalles Bibliográficos
Autores principales: Ohtaki, Kenta K., Patel, Maulik K., Crespillo, Miguel L., Karandikar, Keyur K., Zhang, Yanwen, Graeve, Olivia A., Mecartney, Martha L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143604/
https://www.ncbi.nlm.nih.gov/pubmed/30228374
http://dx.doi.org/10.1038/s41598-018-31721-x
Descripción
Sumario:Radiation damage tolerance for a variety of ceramics at high temperatures depends on the material’s resistance to nucleation and growth of extended defects. Such processes are prevalent in ceramics employed for space, nuclear fission/fusion and nuclear waste environments. This report shows that random heterointerfaces in materials with sub-micron grains can act as highly efficient sinks for point defects compared to grain boundaries in single-phase materials. The concentration of dislocation loops in a radiation damage-prone phase (Al(2)O(3)) is significantly reduced when Al(2)O(3) is a component of a composite system as opposed to a single-phase system. These results present a novel method for designing exceptionally radiation damage tolerant ceramics at high temperatures with a stable grain size, without requiring extensive interfacial engineering or production of nanocrystalline materials.