Cargando…
Treatment of Human Glioblastoma with a Live Attenuated Zika Virus Vaccine Candidate
Glioblastoma (GBM) is the deadliest type of brain tumor, and glioma stem cells (GSCs) contribute to tumor recurrence and therapeutic resistance. Thus, an oncolytic virus targeting GSCs may be useful for improving GBM treatment. Because Zika virus (ZIKV) has an oncolytic tropism for infecting GSCs, w...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143740/ https://www.ncbi.nlm.nih.gov/pubmed/30228241 http://dx.doi.org/10.1128/mBio.01683-18 |
Sumario: | Glioblastoma (GBM) is the deadliest type of brain tumor, and glioma stem cells (GSCs) contribute to tumor recurrence and therapeutic resistance. Thus, an oncolytic virus targeting GSCs may be useful for improving GBM treatment. Because Zika virus (ZIKV) has an oncolytic tropism for infecting GSCs, we investigated the safety and efficacy of a live attenuated ZIKV vaccine candidate (ZIKV-LAV) for the treatment of human GBM in a GSC-derived orthotopic model. Intracerebral injection of ZIKV-LAV into mice caused no neurological symptoms or behavioral abnormalities. The neurovirulence of ZIKV-LAV was more attenuated than that of the licensed Japanese encephalitis virus LAV 14-14-2, underlining the superior safety of ZIKV-LAV for potential GBM treatment. Importantly, ZIKV-LAV significantly reduced intracerebral tumor growth and prolonged animal survival by selectively killing GSCs within the tumor. Mechanistically, ZIKV infection elicited antiviral immunity, inflammation, and GSC apoptosis. Together, these results further support the clinical development of ZIKV-LAV for GBM therapy. |
---|