Cargando…
Pathophysiology of Diabetic Dyslipidemia
Accumulating clinical evidence has suggested serum triglyceride (TG) is a leading predictor of atherosclerotic cardiovascular disease, comparable to low-density lipoprotein (LDL)-cholesterol (C) in populations with type 2 diabetes, which exceeds the predictive power of hemoglobinA1c. Atherogenic dys...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japan Atherosclerosis Society
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143775/ https://www.ncbi.nlm.nih.gov/pubmed/29998913 http://dx.doi.org/10.5551/jat.RV17023 |
_version_ | 1783356037117509632 |
---|---|
author | Hirano, Tsutomu |
author_facet | Hirano, Tsutomu |
author_sort | Hirano, Tsutomu |
collection | PubMed |
description | Accumulating clinical evidence has suggested serum triglyceride (TG) is a leading predictor of atherosclerotic cardiovascular disease, comparable to low-density lipoprotein (LDL)-cholesterol (C) in populations with type 2 diabetes, which exceeds the predictive power of hemoglobinA1c. Atherogenic dyslipidemia in diabetes consists of elevated serum concentrations of TG-rich lipoproteins (TRLs), a high prevalence of small dense low-density lipoprotein (LDL), and low concentrations of cholesterol-rich high-density lipoprotein (HDL)2-C. A central lipoprotein abnormality is an increase in large TG-rich very-low-density lipoprotein (VLDL)1, and other lipoprotein abnormalities are metabolically linked to increased TRLs. Insulin critically regulates serum VLDL concentrations by suppressing hepatic VLDL production and stimulating VLDL removal by activation of lipoprotein lipase. It is still debated whether hyperinsulinemia compensatory for insulin resistance is causally associated with the overproduction of VLDL. This review introduces experimental and clinical observations revealing that insulin resistance, but not hyperinsulinemia stimulates hepatic VLDL production. LDL and HDL consist of heterogeneous particles with different size and density. Cholesterol-depleted small dense LDL and cholesterol-rich HDL2 subspecies are particularly affected by insulin resistance and can be named “Metabolic LDL and HDL,” respectively. We established the direct assays for quantifying small dense LDL-C and small dense HDL(HDL3)-C, respectively. Subtracting HDL3-C from HDL-C gives HDL2-C. I will explain clinical relevance of measurements of LDL and HDL subspecies determined by our assays. Diabetic kidney disease (DKD) substantially worsens plasma lipid profile thereby potentiated atherogenic risk. Finally, I briefly overview pathophysiology of dyslipidemia associated with DKD, which has not been so much taken up by other review articles. |
format | Online Article Text |
id | pubmed-6143775 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Japan Atherosclerosis Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-61437752018-09-19 Pathophysiology of Diabetic Dyslipidemia Hirano, Tsutomu J Atheroscler Thromb Review Accumulating clinical evidence has suggested serum triglyceride (TG) is a leading predictor of atherosclerotic cardiovascular disease, comparable to low-density lipoprotein (LDL)-cholesterol (C) in populations with type 2 diabetes, which exceeds the predictive power of hemoglobinA1c. Atherogenic dyslipidemia in diabetes consists of elevated serum concentrations of TG-rich lipoproteins (TRLs), a high prevalence of small dense low-density lipoprotein (LDL), and low concentrations of cholesterol-rich high-density lipoprotein (HDL)2-C. A central lipoprotein abnormality is an increase in large TG-rich very-low-density lipoprotein (VLDL)1, and other lipoprotein abnormalities are metabolically linked to increased TRLs. Insulin critically regulates serum VLDL concentrations by suppressing hepatic VLDL production and stimulating VLDL removal by activation of lipoprotein lipase. It is still debated whether hyperinsulinemia compensatory for insulin resistance is causally associated with the overproduction of VLDL. This review introduces experimental and clinical observations revealing that insulin resistance, but not hyperinsulinemia stimulates hepatic VLDL production. LDL and HDL consist of heterogeneous particles with different size and density. Cholesterol-depleted small dense LDL and cholesterol-rich HDL2 subspecies are particularly affected by insulin resistance and can be named “Metabolic LDL and HDL,” respectively. We established the direct assays for quantifying small dense LDL-C and small dense HDL(HDL3)-C, respectively. Subtracting HDL3-C from HDL-C gives HDL2-C. I will explain clinical relevance of measurements of LDL and HDL subspecies determined by our assays. Diabetic kidney disease (DKD) substantially worsens plasma lipid profile thereby potentiated atherogenic risk. Finally, I briefly overview pathophysiology of dyslipidemia associated with DKD, which has not been so much taken up by other review articles. Japan Atherosclerosis Society 2018-09-01 /pmc/articles/PMC6143775/ /pubmed/29998913 http://dx.doi.org/10.5551/jat.RV17023 Text en 2018 Japan Atherosclerosis Society This article is distributed under the terms of the latest version of CC BY-NC-SA defined by the Creative Commons Attribution License.http://creativecommons.org/licenses/by-nc-sa/3.0/ |
spellingShingle | Review Hirano, Tsutomu Pathophysiology of Diabetic Dyslipidemia |
title | Pathophysiology of Diabetic Dyslipidemia |
title_full | Pathophysiology of Diabetic Dyslipidemia |
title_fullStr | Pathophysiology of Diabetic Dyslipidemia |
title_full_unstemmed | Pathophysiology of Diabetic Dyslipidemia |
title_short | Pathophysiology of Diabetic Dyslipidemia |
title_sort | pathophysiology of diabetic dyslipidemia |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143775/ https://www.ncbi.nlm.nih.gov/pubmed/29998913 http://dx.doi.org/10.5551/jat.RV17023 |
work_keys_str_mv | AT hiranotsutomu pathophysiologyofdiabeticdyslipidemia |