Cargando…
Learning Brain Connectivity Sub-networks by Group- Constrained Sparse Inverse Covariance Estimation for Alzheimer's Disease Classification
Background/Aims: Brain functional connectivity networks constructed from resting-state functional magnetic resonance imaging (rs-fMRI) have been widely used for classifying Alzheimer's disease (AD) from normal controls (NC). However, conventional correlation analysis methods only capture the pa...
Autores principales: | Li, Yang, Liu, Jingyu, Huang, Jie, Li, Zuoyong, Liang, Peipeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143825/ https://www.ncbi.nlm.nih.gov/pubmed/30258358 http://dx.doi.org/10.3389/fninf.2018.00058 |
Ejemplares similares
-
Spectral guided sparse inverse covariance estimation of metabolic networks in Parkinson’s disease
por: Spetsieris, Phoebe G., et al.
Publicado: (2020) -
Fast covariance estimation for sparse functional data
por: Xiao, Luo, et al.
Publicado: (2017) -
Fast covariance estimation for multivariate sparse functional data
por: Li, Cai, et al.
Publicado: (2020) -
Progressive structural and covariance connectivity abnormalities in patients with Alzheimer’s disease
por: Xiao, Yaqiong, et al.
Publicado: (2023) -
Restricted maximum likelihood estimation of covariances in sparse linear models
por: Neumaier, Arnold, et al.
Publicado: (1998)