Cargando…
Long noncoding RNA TCONS_00024652 regulates vascular endothelial cell proliferation and angiogenesis via microRNA-21
Acute coronary syndrome caused by the rupture of atherosclerotic plaques is one of the primary causes of major cardiovascular events, and neovascularization within the plaque is closely associated with its stability. Long noncoding RNA (lncRNAs) is a type of noncoding RNA that serves a crucial role...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143905/ https://www.ncbi.nlm.nih.gov/pubmed/30233677 http://dx.doi.org/10.3892/etm.2018.6594 |
Sumario: | Acute coronary syndrome caused by the rupture of atherosclerotic plaques is one of the primary causes of major cardiovascular events, and neovascularization within the plaque is closely associated with its stability. Long noncoding RNA (lncRNAs) is a type of noncoding RNA that serves a crucial role in regulating vascular endothelial cells (VECs). The aim of the present study was to investigate the effect of lncRNA TCONS_00024652 on the proliferation and angiogenesis of VECs following stimulation with TNF-α. The expression of lncRNA and miRNA was measured in human umbilical vein endothelial cells (HUVECs) by reverse transcription-quantitative polymerase chain reaction. Cell proliferation was measured using a Cell Counting Kit-8 assay. Wound healing and tube formation assays were performed to determine cell migration and angiogenesis. Interactions between TCONS_00024652 and miR-21 were determined using bioinformatics and a dual-luciferase reporter assay. The results demonstrated that TCONS_00024652 is highly expressed in TNF-α-induced HUVECs. Functional assays demonstrated that the dysregulated expression of TCONS_00024652 promotes endothelial cell proliferation and angiogenesis, whereas TCONS_00024652 knockdown induces the opposite effects. Bioinformatics analysis using starBase predicted putative binding at the 3′-untranslated region of TCONS_00024652 and miR-21 and luciferase reporter assays further verified this interaction. The results of the present study suggest that the targeting of TCONS_00024652 by miR-21 may be a potential method of improving vascular endothelial dysfunction, neovascularization maturation and plaque stabilization. |
---|