Cargando…
SB Driver Analysis: a Sleeping Beauty cancer driver analysis framework for identifying and prioritizing experimentally actionable oncogenes and tumor suppressors
Cancer driver prioritization for functional analysis of potential actionable therapeutic targets is a significant challenge. Meta-analyses of mutated genes across different human cancer types for driver prioritization has reaffirmed the role of major players in cancer, including KRAS, TP53 and EGFR,...
Autores principales: | Newberg, Justin Y, Black, Michael A, Jenkins, Nancy A, Copeland, Neal G, Mann, Karen M, Mann, Michael B |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6144815/ https://www.ncbi.nlm.nih.gov/pubmed/29846651 http://dx.doi.org/10.1093/nar/gky450 |
Ejemplares similares
-
SBCDDB: Sleeping Beauty Cancer Driver Database for gene discovery in mouse models of human cancers
por: Newberg, Justin Y, et al.
Publicado: (2018) -
Identification of cancer driver genes using Sleeping Beauty transposon mutagenesis
por: Takeda, Haruna, et al.
Publicado: (2021) -
DriverML: a machine learning algorithm for identifying driver genes in cancer sequencing studies
por: Han, Yi, et al.
Publicado: (2019) -
Functional impact bias reveals cancer drivers
por: Gonzalez-Perez, Abel, et al.
Publicado: (2012) -
Discovery of cancer common and specific driver gene sets
por: Zhang, Junhua, et al.
Publicado: (2017)