Cargando…
A deep recurrent neural network discovers complex biological rules to decipher RNA protein-coding potential
The current deluge of newly identified RNA transcripts presents a singular opportunity for improved assessment of coding potential, a cornerstone of genome annotation, and for machine-driven discovery of biological knowledge. While traditional, feature-based methods for RNA classification are limite...
Autores principales: | Hill, Steven T, Kuintzle, Rachael, Teegarden, Amy, Merrill, Erich, Danaee, Padideh, Hendrix, David A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6144860/ https://www.ncbi.nlm.nih.gov/pubmed/29986088 http://dx.doi.org/10.1093/nar/gky567 |
Ejemplares similares
-
Circadian deep sequencing reveals stress-response genes that adopt robust rhythmic expression during aging
por: Kuintzle, Rachael C., et al.
Publicado: (2017) -
bpRNA: large-scale automated annotation and analysis of RNA secondary structure
por: Danaee, Padideh, et al.
Publicado: (2018) -
Deciphering the rules of mRNA structure differentiation in Saccharomyces cerevisiae in vivo and in vitro with deep neural networks
por: Yu, Haopeng, et al.
Publicado: (2019) -
NeuronMotif: Deciphering cis-regulatory codes by layer-wise demixing of deep neural networks
por: Wei, Zheng, et al.
Publicado: (2023) -
Deciphering epigenomic code for cell differentiation using deep learning
por: Ni, Pengyu, et al.
Publicado: (2019)