Cargando…

Sc-ncDNAPred: A Sequence-Based Predictor for Identifying Non-coding DNA in Saccharomyces cerevisiae

With the rapid development of high-speed sequencing technologies and the implementation of many whole genome sequencing project, research in the genomics is advancing from genome sequencing to genome synthesis. Synthetic biology technologies such as DNA-based molecular assemblies, genome editing tec...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Wenying, Ju, Ying, Zeng, Xiangxiang, Liu, Xiangrong, Zou, Quan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6144933/
https://www.ncbi.nlm.nih.gov/pubmed/30258427
http://dx.doi.org/10.3389/fmicb.2018.02174
Descripción
Sumario:With the rapid development of high-speed sequencing technologies and the implementation of many whole genome sequencing project, research in the genomics is advancing from genome sequencing to genome synthesis. Synthetic biology technologies such as DNA-based molecular assemblies, genome editing technology, directional evolution technology and DNA storage technology, and other cutting-edge technologies emerge in succession. Especially the rapid growth and development of DNA assembly technology may greatly push forward the success of artificial life. Meanwhile, DNA assembly technology needs a large number of target sequences of known information as data support. Non-coding DNA (ncDNA) sequences occupy most of the organism genomes, thus accurate recognizing of them is necessary. Although experimental methods have been proposed to detect ncDNA sequences, they are expensive for performing genome wide detections. Thus, it is necessary to develop machine-learning methods for predicting non-coding DNA sequences. In this study, we collected the ncDNA benchmark dataset of Saccharomyces cerevisiae and reported a support vector machine-based predictor, called Sc-ncDNAPred, for predicting ncDNA sequences. The optimal feature extraction strategy was selected from a group included mononucleotide, dimer, trimer, tetramer, pentamer, and hexamer, using support vector machine learning method. Sc-ncDNAPred achieved an overall accuracy of 0.98. For the convenience of users, an online web-server has been built at: http://server.malab.cn/Sc_ncDNAPred/index.jsp.