Cargando…
Sea‐level rise, habitat loss, and potential extirpation of a salt marsh specialist bird in urbanized landscapes
Sea‐level rise (SLR) impacts on intertidal habitat depend on coastal topology, accretion, and constraints from surrounding development. Such habitat changes might affect species like Belding's savannah sparrows (Passerculus sandwichensis beldingi; BSSP), which live in high‐elevation salt marsh...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6144993/ https://www.ncbi.nlm.nih.gov/pubmed/30250688 http://dx.doi.org/10.1002/ece3.4196 |
_version_ | 1783356184970919936 |
---|---|
author | Rosencranz, Jordan A. Thorne, Karen M. Buffington, Kevin J. Takekawa, John Y. Hechinger, Ryan F. Stewart, Tara E. Ambrose, Richard F. MacDonald, Glen M. Holmgren, Mark A. Crooks, Jeff A. Patton, Robert T. Lafferty, Kevin D. |
author_facet | Rosencranz, Jordan A. Thorne, Karen M. Buffington, Kevin J. Takekawa, John Y. Hechinger, Ryan F. Stewart, Tara E. Ambrose, Richard F. MacDonald, Glen M. Holmgren, Mark A. Crooks, Jeff A. Patton, Robert T. Lafferty, Kevin D. |
author_sort | Rosencranz, Jordan A. |
collection | PubMed |
description | Sea‐level rise (SLR) impacts on intertidal habitat depend on coastal topology, accretion, and constraints from surrounding development. Such habitat changes might affect species like Belding's savannah sparrows (Passerculus sandwichensis beldingi; BSSP), which live in high‐elevation salt marsh in the Southern California Bight. To predict how BSSP habitat might change under various SLR scenarios, we first constructed a suitability model by matching bird observations with elevation. We then mapped current BSSP breeding and foraging habitat at six estuarine sites by applying the elevation‐suitability model to digital elevation models. To estimate changes in digital elevation models under different SLR scenarios, we used a site‐specific, one‐dimensional elevation model (wetland accretion rate model of ecosystem resilience). We then applied our elevation‐suitability model to the projected digital elevation models. The resulting maps suggest that suitable breeding and foraging habitat could decline as increased inundation converts middle‐ and high‐elevation suitable habitat to mudflat and subtidal zones. As a result, the highest SLR scenario predicted that no suitable breeding or foraging habitat would remain at any site by 2100 and 2110. Removing development constraints to facilitate landward migration of high salt marsh, or redistributing dredge spoils to replace submerged habitat, might create future high salt marsh habitat, thereby reducing extirpation risk for BSSP in southern California. |
format | Online Article Text |
id | pubmed-6144993 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-61449932018-09-24 Sea‐level rise, habitat loss, and potential extirpation of a salt marsh specialist bird in urbanized landscapes Rosencranz, Jordan A. Thorne, Karen M. Buffington, Kevin J. Takekawa, John Y. Hechinger, Ryan F. Stewart, Tara E. Ambrose, Richard F. MacDonald, Glen M. Holmgren, Mark A. Crooks, Jeff A. Patton, Robert T. Lafferty, Kevin D. Ecol Evol Original Research Sea‐level rise (SLR) impacts on intertidal habitat depend on coastal topology, accretion, and constraints from surrounding development. Such habitat changes might affect species like Belding's savannah sparrows (Passerculus sandwichensis beldingi; BSSP), which live in high‐elevation salt marsh in the Southern California Bight. To predict how BSSP habitat might change under various SLR scenarios, we first constructed a suitability model by matching bird observations with elevation. We then mapped current BSSP breeding and foraging habitat at six estuarine sites by applying the elevation‐suitability model to digital elevation models. To estimate changes in digital elevation models under different SLR scenarios, we used a site‐specific, one‐dimensional elevation model (wetland accretion rate model of ecosystem resilience). We then applied our elevation‐suitability model to the projected digital elevation models. The resulting maps suggest that suitable breeding and foraging habitat could decline as increased inundation converts middle‐ and high‐elevation suitable habitat to mudflat and subtidal zones. As a result, the highest SLR scenario predicted that no suitable breeding or foraging habitat would remain at any site by 2100 and 2110. Removing development constraints to facilitate landward migration of high salt marsh, or redistributing dredge spoils to replace submerged habitat, might create future high salt marsh habitat, thereby reducing extirpation risk for BSSP in southern California. John Wiley and Sons Inc. 2018-07-22 /pmc/articles/PMC6144993/ /pubmed/30250688 http://dx.doi.org/10.1002/ece3.4196 Text en © 2018 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Rosencranz, Jordan A. Thorne, Karen M. Buffington, Kevin J. Takekawa, John Y. Hechinger, Ryan F. Stewart, Tara E. Ambrose, Richard F. MacDonald, Glen M. Holmgren, Mark A. Crooks, Jeff A. Patton, Robert T. Lafferty, Kevin D. Sea‐level rise, habitat loss, and potential extirpation of a salt marsh specialist bird in urbanized landscapes |
title | Sea‐level rise, habitat loss, and potential extirpation of a salt marsh specialist bird in urbanized landscapes |
title_full | Sea‐level rise, habitat loss, and potential extirpation of a salt marsh specialist bird in urbanized landscapes |
title_fullStr | Sea‐level rise, habitat loss, and potential extirpation of a salt marsh specialist bird in urbanized landscapes |
title_full_unstemmed | Sea‐level rise, habitat loss, and potential extirpation of a salt marsh specialist bird in urbanized landscapes |
title_short | Sea‐level rise, habitat loss, and potential extirpation of a salt marsh specialist bird in urbanized landscapes |
title_sort | sea‐level rise, habitat loss, and potential extirpation of a salt marsh specialist bird in urbanized landscapes |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6144993/ https://www.ncbi.nlm.nih.gov/pubmed/30250688 http://dx.doi.org/10.1002/ece3.4196 |
work_keys_str_mv | AT rosencranzjordana sealevelrisehabitatlossandpotentialextirpationofasaltmarshspecialistbirdinurbanizedlandscapes AT thornekarenm sealevelrisehabitatlossandpotentialextirpationofasaltmarshspecialistbirdinurbanizedlandscapes AT buffingtonkevinj sealevelrisehabitatlossandpotentialextirpationofasaltmarshspecialistbirdinurbanizedlandscapes AT takekawajohny sealevelrisehabitatlossandpotentialextirpationofasaltmarshspecialistbirdinurbanizedlandscapes AT hechingerryanf sealevelrisehabitatlossandpotentialextirpationofasaltmarshspecialistbirdinurbanizedlandscapes AT stewarttarae sealevelrisehabitatlossandpotentialextirpationofasaltmarshspecialistbirdinurbanizedlandscapes AT ambroserichardf sealevelrisehabitatlossandpotentialextirpationofasaltmarshspecialistbirdinurbanizedlandscapes AT macdonaldglenm sealevelrisehabitatlossandpotentialextirpationofasaltmarshspecialistbirdinurbanizedlandscapes AT holmgrenmarka sealevelrisehabitatlossandpotentialextirpationofasaltmarshspecialistbirdinurbanizedlandscapes AT crooksjeffa sealevelrisehabitatlossandpotentialextirpationofasaltmarshspecialistbirdinurbanizedlandscapes AT pattonrobertt sealevelrisehabitatlossandpotentialextirpationofasaltmarshspecialistbirdinurbanizedlandscapes AT laffertykevind sealevelrisehabitatlossandpotentialextirpationofasaltmarshspecialistbirdinurbanizedlandscapes |