Cargando…

Sibling rivalry: Males with more brothers develop larger testes

When females mate with multiple partners in a reproductive cycle, the relative number of competing sperm from rival males is often the most critical factor in determining paternity. Gamete production is directly related to testis size in most species, and is associated with both mating behavior and...

Descripción completa

Detalles Bibliográficos
Autores principales: Fisher, Heidi S., Hook, Kristin A., Weber, W. David, Hoekstra, Hopi E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145022/
https://www.ncbi.nlm.nih.gov/pubmed/30250695
http://dx.doi.org/10.1002/ece3.4337
Descripción
Sumario:When females mate with multiple partners in a reproductive cycle, the relative number of competing sperm from rival males is often the most critical factor in determining paternity. Gamete production is directly related to testis size in most species, and is associated with both mating behavior and perceived risk of competition. Deer mice, Peromyscus maniculatus, are naturally promiscuous and males invest significantly more in sperm production than males of P. polionotus, their monogamous sister‐species. Here, we show that the larger testes in P. maniculatus are retained after decades of enforced monogamy in captivity. While these results suggest that differences in sperm production between species with divergent evolutionary histories can be maintained in captivity, we also show that the early rearing environment of males can strongly influence their testis size as adults. Using a second‐generation hybrid population to increase variation within the population, we show that males reared in litters with more brothers develop larger testes as adults. Importantly, this difference in testis size is also associated with increased fertility. Together, our findings suggest that sperm production may be both broadly shaped by natural selection over evolutionary timescales and also finely tuned during early development.