Cargando…
Insight into the Mechanistic Basis of the Hysteretic-Like Kinetic Behavior of Thioredoxin-Glutathione Reductase (TGR)
A kinetic study of thioredoxin-glutathione reductase (TGR) from Taenia crassiceps metacestode (cysticerci) was carried out. The results obtained from both initial velocity and product inhibition experiments suggest the enzyme follows a two-site ping-pong bi bi kinetic mechanism, in which both substr...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145155/ https://www.ncbi.nlm.nih.gov/pubmed/30254758 http://dx.doi.org/10.1155/2018/3215462 |
_version_ | 1783356210208047104 |
---|---|
author | Rendón, Juan L. Miranda-Leyva, Mauricio Guevara-Flores, Alberto Martínez-González, José de Jesús del Arenal, Irene Patricia Flores-Herrera, Oscar Pardo, Juan P. |
author_facet | Rendón, Juan L. Miranda-Leyva, Mauricio Guevara-Flores, Alberto Martínez-González, José de Jesús del Arenal, Irene Patricia Flores-Herrera, Oscar Pardo, Juan P. |
author_sort | Rendón, Juan L. |
collection | PubMed |
description | A kinetic study of thioredoxin-glutathione reductase (TGR) from Taenia crassiceps metacestode (cysticerci) was carried out. The results obtained from both initial velocity and product inhibition experiments suggest the enzyme follows a two-site ping-pong bi bi kinetic mechanism, in which both substrates and products are bound in rapid equilibrium fashion. The substrate GSSG exerts inhibition at moderate or high concentrations, which is concomitant with the observation of hysteretic-like progress curves. The effect of NADPH on the apparent hysteretic behavior of TGR was also studied. At low concentrations of NADPH in the presence of moderate concentrations of GSSG, atypical time progress curves were observed, consisting of an initial burst-like stage, followed by a lag whose amplitude and duration depended on the concentration of both NADPH and GSSG. Based on all the kinetic and structural evidence available on TGR, a mechanism-based model was developed. The model assumes a noncompetitive mode of inhibition by GSSG in which the disulfide behaves as an affinity label-like reagent through its binding and reduction at an alternative site, leading the enzyme into an inactive state. The critical points of the model are the persistence of residual GSSG reductase activity in the inhibited GSSG-enzyme complexes and the regeneration of the active form of the enzyme by GSH. Hence, the hysteretic-like progress curves of GSSG reduction by TGR are the result of a continuous competition between GSH and GSSG for driving the enzyme into active or inactive states, respectively. By using an arbitrary but consistent set of rate constants, the experimental full progress curves were successfully reproduced in silico. |
format | Online Article Text |
id | pubmed-6145155 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-61451552018-09-25 Insight into the Mechanistic Basis of the Hysteretic-Like Kinetic Behavior of Thioredoxin-Glutathione Reductase (TGR) Rendón, Juan L. Miranda-Leyva, Mauricio Guevara-Flores, Alberto Martínez-González, José de Jesús del Arenal, Irene Patricia Flores-Herrera, Oscar Pardo, Juan P. Enzyme Res Research Article A kinetic study of thioredoxin-glutathione reductase (TGR) from Taenia crassiceps metacestode (cysticerci) was carried out. The results obtained from both initial velocity and product inhibition experiments suggest the enzyme follows a two-site ping-pong bi bi kinetic mechanism, in which both substrates and products are bound in rapid equilibrium fashion. The substrate GSSG exerts inhibition at moderate or high concentrations, which is concomitant with the observation of hysteretic-like progress curves. The effect of NADPH on the apparent hysteretic behavior of TGR was also studied. At low concentrations of NADPH in the presence of moderate concentrations of GSSG, atypical time progress curves were observed, consisting of an initial burst-like stage, followed by a lag whose amplitude and duration depended on the concentration of both NADPH and GSSG. Based on all the kinetic and structural evidence available on TGR, a mechanism-based model was developed. The model assumes a noncompetitive mode of inhibition by GSSG in which the disulfide behaves as an affinity label-like reagent through its binding and reduction at an alternative site, leading the enzyme into an inactive state. The critical points of the model are the persistence of residual GSSG reductase activity in the inhibited GSSG-enzyme complexes and the regeneration of the active form of the enzyme by GSH. Hence, the hysteretic-like progress curves of GSSG reduction by TGR are the result of a continuous competition between GSH and GSSG for driving the enzyme into active or inactive states, respectively. By using an arbitrary but consistent set of rate constants, the experimental full progress curves were successfully reproduced in silico. Hindawi 2018-09-05 /pmc/articles/PMC6145155/ /pubmed/30254758 http://dx.doi.org/10.1155/2018/3215462 Text en Copyright © 2018 Juan L. Rendón et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Rendón, Juan L. Miranda-Leyva, Mauricio Guevara-Flores, Alberto Martínez-González, José de Jesús del Arenal, Irene Patricia Flores-Herrera, Oscar Pardo, Juan P. Insight into the Mechanistic Basis of the Hysteretic-Like Kinetic Behavior of Thioredoxin-Glutathione Reductase (TGR) |
title | Insight into the Mechanistic Basis of the Hysteretic-Like Kinetic Behavior of Thioredoxin-Glutathione Reductase (TGR) |
title_full | Insight into the Mechanistic Basis of the Hysteretic-Like Kinetic Behavior of Thioredoxin-Glutathione Reductase (TGR) |
title_fullStr | Insight into the Mechanistic Basis of the Hysteretic-Like Kinetic Behavior of Thioredoxin-Glutathione Reductase (TGR) |
title_full_unstemmed | Insight into the Mechanistic Basis of the Hysteretic-Like Kinetic Behavior of Thioredoxin-Glutathione Reductase (TGR) |
title_short | Insight into the Mechanistic Basis of the Hysteretic-Like Kinetic Behavior of Thioredoxin-Glutathione Reductase (TGR) |
title_sort | insight into the mechanistic basis of the hysteretic-like kinetic behavior of thioredoxin-glutathione reductase (tgr) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145155/ https://www.ncbi.nlm.nih.gov/pubmed/30254758 http://dx.doi.org/10.1155/2018/3215462 |
work_keys_str_mv | AT rendonjuanl insightintothemechanisticbasisofthehystereticlikekineticbehaviorofthioredoxinglutathionereductasetgr AT mirandaleyvamauricio insightintothemechanisticbasisofthehystereticlikekineticbehaviorofthioredoxinglutathionereductasetgr AT guevarafloresalberto insightintothemechanisticbasisofthehystereticlikekineticbehaviorofthioredoxinglutathionereductasetgr AT martinezgonzalezjosedejesus insightintothemechanisticbasisofthehystereticlikekineticbehaviorofthioredoxinglutathionereductasetgr AT delarenalirenepatricia insightintothemechanisticbasisofthehystereticlikekineticbehaviorofthioredoxinglutathionereductasetgr AT floresherreraoscar insightintothemechanisticbasisofthehystereticlikekineticbehaviorofthioredoxinglutathionereductasetgr AT pardojuanp insightintothemechanisticbasisofthehystereticlikekineticbehaviorofthioredoxinglutathionereductasetgr |