Cargando…
A Dual‐Salt Gel Polymer Electrolyte with 3D Cross‐Linked Polymer Network for Dendrite‐Free Lithium Metal Batteries
Lithium metal batteries show great potential in energy storage because of their high energy density. Nevertheless, building a stable solid electrolyte interphase (SEI) and restraining the dendrite growth are difficult to realize with traditional liquid electrolytes. Solid and gel electrolytes are co...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145227/ https://www.ncbi.nlm.nih.gov/pubmed/30250798 http://dx.doi.org/10.1002/advs.201800559 |
_version_ | 1783356224125796352 |
---|---|
author | Fan, Wei Li, Nian‐Wu Zhang, Xiuling Zhao, Shuyu Cao, Ran Yin, Yingying Xing, Yi Wang, Jiaona Guo, Yu‐Guo Li, Congju |
author_facet | Fan, Wei Li, Nian‐Wu Zhang, Xiuling Zhao, Shuyu Cao, Ran Yin, Yingying Xing, Yi Wang, Jiaona Guo, Yu‐Guo Li, Congju |
author_sort | Fan, Wei |
collection | PubMed |
description | Lithium metal batteries show great potential in energy storage because of their high energy density. Nevertheless, building a stable solid electrolyte interphase (SEI) and restraining the dendrite growth are difficult to realize with traditional liquid electrolytes. Solid and gel electrolytes are considered promising candidates to restrain the dendrites growth, while they are still limited by low ionic conductivity and incompatible interphases. Herein, a dual‐salt (LiTFSI‐LiPF(6)) gel polymer electrolyte (GPE) with 3D cross‐linked polymer network is designed to address these issues. By introducing a dual salt in 3D structure fabricated using an in situ polymerization method, the 3D‐GPE exhibits a high ionic conductivity (0.56 mS cm(−1) at room temperature) and builds a robust and conductive SEI on the lithium metal surface. Consequently, the Li metal batteries using 3D‐GPE can markedly reduce the dendrite growth and achieve 87.93% capacity retention after cycling for 300 cycles. This work demonstrates a promising method to design electrolytes for lithium metal batteries. |
format | Online Article Text |
id | pubmed-6145227 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-61452272018-09-24 A Dual‐Salt Gel Polymer Electrolyte with 3D Cross‐Linked Polymer Network for Dendrite‐Free Lithium Metal Batteries Fan, Wei Li, Nian‐Wu Zhang, Xiuling Zhao, Shuyu Cao, Ran Yin, Yingying Xing, Yi Wang, Jiaona Guo, Yu‐Guo Li, Congju Adv Sci (Weinh) Communications Lithium metal batteries show great potential in energy storage because of their high energy density. Nevertheless, building a stable solid electrolyte interphase (SEI) and restraining the dendrite growth are difficult to realize with traditional liquid electrolytes. Solid and gel electrolytes are considered promising candidates to restrain the dendrites growth, while they are still limited by low ionic conductivity and incompatible interphases. Herein, a dual‐salt (LiTFSI‐LiPF(6)) gel polymer electrolyte (GPE) with 3D cross‐linked polymer network is designed to address these issues. By introducing a dual salt in 3D structure fabricated using an in situ polymerization method, the 3D‐GPE exhibits a high ionic conductivity (0.56 mS cm(−1) at room temperature) and builds a robust and conductive SEI on the lithium metal surface. Consequently, the Li metal batteries using 3D‐GPE can markedly reduce the dendrite growth and achieve 87.93% capacity retention after cycling for 300 cycles. This work demonstrates a promising method to design electrolytes for lithium metal batteries. John Wiley and Sons Inc. 2018-07-13 /pmc/articles/PMC6145227/ /pubmed/30250798 http://dx.doi.org/10.1002/advs.201800559 Text en © 2018 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Communications Fan, Wei Li, Nian‐Wu Zhang, Xiuling Zhao, Shuyu Cao, Ran Yin, Yingying Xing, Yi Wang, Jiaona Guo, Yu‐Guo Li, Congju A Dual‐Salt Gel Polymer Electrolyte with 3D Cross‐Linked Polymer Network for Dendrite‐Free Lithium Metal Batteries |
title | A Dual‐Salt Gel Polymer Electrolyte with 3D Cross‐Linked Polymer Network for Dendrite‐Free Lithium Metal Batteries |
title_full | A Dual‐Salt Gel Polymer Electrolyte with 3D Cross‐Linked Polymer Network for Dendrite‐Free Lithium Metal Batteries |
title_fullStr | A Dual‐Salt Gel Polymer Electrolyte with 3D Cross‐Linked Polymer Network for Dendrite‐Free Lithium Metal Batteries |
title_full_unstemmed | A Dual‐Salt Gel Polymer Electrolyte with 3D Cross‐Linked Polymer Network for Dendrite‐Free Lithium Metal Batteries |
title_short | A Dual‐Salt Gel Polymer Electrolyte with 3D Cross‐Linked Polymer Network for Dendrite‐Free Lithium Metal Batteries |
title_sort | dual‐salt gel polymer electrolyte with 3d cross‐linked polymer network for dendrite‐free lithium metal batteries |
topic | Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145227/ https://www.ncbi.nlm.nih.gov/pubmed/30250798 http://dx.doi.org/10.1002/advs.201800559 |
work_keys_str_mv | AT fanwei adualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries AT linianwu adualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries AT zhangxiuling adualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries AT zhaoshuyu adualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries AT caoran adualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries AT yinyingying adualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries AT xingyi adualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries AT wangjiaona adualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries AT guoyuguo adualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries AT licongju adualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries AT fanwei dualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries AT linianwu dualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries AT zhangxiuling dualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries AT zhaoshuyu dualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries AT caoran dualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries AT yinyingying dualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries AT xingyi dualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries AT wangjiaona dualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries AT guoyuguo dualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries AT licongju dualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries |