Cargando…

A Dual‐Salt Gel Polymer Electrolyte with 3D Cross‐Linked Polymer Network for Dendrite‐Free Lithium Metal Batteries

Lithium metal batteries show great potential in energy storage because of their high energy density. Nevertheless, building a stable solid electrolyte interphase (SEI) and restraining the dendrite growth are difficult to realize with traditional liquid electrolytes. Solid and gel electrolytes are co...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Wei, Li, Nian‐Wu, Zhang, Xiuling, Zhao, Shuyu, Cao, Ran, Yin, Yingying, Xing, Yi, Wang, Jiaona, Guo, Yu‐Guo, Li, Congju
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145227/
https://www.ncbi.nlm.nih.gov/pubmed/30250798
http://dx.doi.org/10.1002/advs.201800559
_version_ 1783356224125796352
author Fan, Wei
Li, Nian‐Wu
Zhang, Xiuling
Zhao, Shuyu
Cao, Ran
Yin, Yingying
Xing, Yi
Wang, Jiaona
Guo, Yu‐Guo
Li, Congju
author_facet Fan, Wei
Li, Nian‐Wu
Zhang, Xiuling
Zhao, Shuyu
Cao, Ran
Yin, Yingying
Xing, Yi
Wang, Jiaona
Guo, Yu‐Guo
Li, Congju
author_sort Fan, Wei
collection PubMed
description Lithium metal batteries show great potential in energy storage because of their high energy density. Nevertheless, building a stable solid electrolyte interphase (SEI) and restraining the dendrite growth are difficult to realize with traditional liquid electrolytes. Solid and gel electrolytes are considered promising candidates to restrain the dendrites growth, while they are still limited by low ionic conductivity and incompatible interphases. Herein, a dual‐salt (LiTFSI‐LiPF(6)) gel polymer electrolyte (GPE) with 3D cross‐linked polymer network is designed to address these issues. By introducing a dual salt in 3D structure fabricated using an in situ polymerization method, the 3D‐GPE exhibits a high ionic conductivity (0.56 mS cm(−1) at room temperature) and builds a robust and conductive SEI on the lithium metal surface. Consequently, the Li metal batteries using 3D‐GPE can markedly reduce the dendrite growth and achieve 87.93% capacity retention after cycling for 300 cycles. This work demonstrates a promising method to design electrolytes for lithium metal batteries.
format Online
Article
Text
id pubmed-6145227
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-61452272018-09-24 A Dual‐Salt Gel Polymer Electrolyte with 3D Cross‐Linked Polymer Network for Dendrite‐Free Lithium Metal Batteries Fan, Wei Li, Nian‐Wu Zhang, Xiuling Zhao, Shuyu Cao, Ran Yin, Yingying Xing, Yi Wang, Jiaona Guo, Yu‐Guo Li, Congju Adv Sci (Weinh) Communications Lithium metal batteries show great potential in energy storage because of their high energy density. Nevertheless, building a stable solid electrolyte interphase (SEI) and restraining the dendrite growth are difficult to realize with traditional liquid electrolytes. Solid and gel electrolytes are considered promising candidates to restrain the dendrites growth, while they are still limited by low ionic conductivity and incompatible interphases. Herein, a dual‐salt (LiTFSI‐LiPF(6)) gel polymer electrolyte (GPE) with 3D cross‐linked polymer network is designed to address these issues. By introducing a dual salt in 3D structure fabricated using an in situ polymerization method, the 3D‐GPE exhibits a high ionic conductivity (0.56 mS cm(−1) at room temperature) and builds a robust and conductive SEI on the lithium metal surface. Consequently, the Li metal batteries using 3D‐GPE can markedly reduce the dendrite growth and achieve 87.93% capacity retention after cycling for 300 cycles. This work demonstrates a promising method to design electrolytes for lithium metal batteries. John Wiley and Sons Inc. 2018-07-13 /pmc/articles/PMC6145227/ /pubmed/30250798 http://dx.doi.org/10.1002/advs.201800559 Text en © 2018 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Communications
Fan, Wei
Li, Nian‐Wu
Zhang, Xiuling
Zhao, Shuyu
Cao, Ran
Yin, Yingying
Xing, Yi
Wang, Jiaona
Guo, Yu‐Guo
Li, Congju
A Dual‐Salt Gel Polymer Electrolyte with 3D Cross‐Linked Polymer Network for Dendrite‐Free Lithium Metal Batteries
title A Dual‐Salt Gel Polymer Electrolyte with 3D Cross‐Linked Polymer Network for Dendrite‐Free Lithium Metal Batteries
title_full A Dual‐Salt Gel Polymer Electrolyte with 3D Cross‐Linked Polymer Network for Dendrite‐Free Lithium Metal Batteries
title_fullStr A Dual‐Salt Gel Polymer Electrolyte with 3D Cross‐Linked Polymer Network for Dendrite‐Free Lithium Metal Batteries
title_full_unstemmed A Dual‐Salt Gel Polymer Electrolyte with 3D Cross‐Linked Polymer Network for Dendrite‐Free Lithium Metal Batteries
title_short A Dual‐Salt Gel Polymer Electrolyte with 3D Cross‐Linked Polymer Network for Dendrite‐Free Lithium Metal Batteries
title_sort dual‐salt gel polymer electrolyte with 3d cross‐linked polymer network for dendrite‐free lithium metal batteries
topic Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145227/
https://www.ncbi.nlm.nih.gov/pubmed/30250798
http://dx.doi.org/10.1002/advs.201800559
work_keys_str_mv AT fanwei adualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries
AT linianwu adualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries
AT zhangxiuling adualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries
AT zhaoshuyu adualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries
AT caoran adualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries
AT yinyingying adualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries
AT xingyi adualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries
AT wangjiaona adualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries
AT guoyuguo adualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries
AT licongju adualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries
AT fanwei dualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries
AT linianwu dualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries
AT zhangxiuling dualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries
AT zhaoshuyu dualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries
AT caoran dualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries
AT yinyingying dualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries
AT xingyi dualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries
AT wangjiaona dualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries
AT guoyuguo dualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries
AT licongju dualsaltgelpolymerelectrolytewith3dcrosslinkedpolymernetworkfordendritefreelithiummetalbatteries