Cargando…
MaxMIF: A New Method for Identifying Cancer Driver Genes through Effective Data Integration
Identification of a few cancer driver mutation genes from a much larger number of passenger mutation genes in cancer samples remains a highly challenging task. Here, a novel method for distinguishing the driver genes from the passenger genes by effective integration of somatic mutation data and mole...
Autores principales: | Hou, Yingnan, Gao, Bo, Li, Guojun, Su, Zhengchang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145398/ https://www.ncbi.nlm.nih.gov/pubmed/30250803 http://dx.doi.org/10.1002/advs.201800640 |
Ejemplares similares
-
Prediction of Driver Modules via Balancing Exclusive Coverages of Mutations in Cancer Samples
por: Gao, Bo, et al.
Publicado: (2018) -
A MIF‐Derived Cyclopeptide that Inhibits MIF Binding and Atherogenic Signaling via the Chemokine Receptor CXCR2
por: Krammer, Christine, et al.
Publicado: (2020) -
KSP: an integrated method for predicting catalyzing kinases of phosphorylation sites in proteins
por: Ma, Hongli, et al.
Publicado: (2020) -
Identification of Common Driver Gene Modules and Associations between Cancers through Integrated Network Analysis
por: Gao, Bo, et al.
Publicado: (2021) -
Highly multiplexed AmpliSeq technology identifies novel variation of flowering time-related genes in soybean (Glycine max)
por: Ogiso-Tanaka, Eri, et al.
Publicado: (2019)