Cargando…

Origin and Perspectives of the Photochemical Activity of Nanoporous Carbons

Even though, owing to the complexity of nanoporous carbons' structure and chemistry, the origin of their photoactivity is not yet fully understood, the recent works addressed here clearly show the ability of these materials to absorb light and convert the photogenerated charge carriers into che...

Descripción completa

Detalles Bibliográficos
Autores principales: Bandosz, Teresa J., Ania, Conchi O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145414/
https://www.ncbi.nlm.nih.gov/pubmed/30250787
http://dx.doi.org/10.1002/advs.201800293
Descripción
Sumario:Even though, owing to the complexity of nanoporous carbons' structure and chemistry, the origin of their photoactivity is not yet fully understood, the recent works addressed here clearly show the ability of these materials to absorb light and convert the photogenerated charge carriers into chemical reactions. In many aspects, nanoporous carbons are similar to graphene; their pores are built of distorted graphene layers and defects that arise from their amorphicity and reactivity. As in graphene, the photoactivity of nanoporous carbons is linked to their semiconducting, optical, and electronic properties, defined by the composition and structural defects in the distorted graphene layers that facilitate the exciton splitting and charge separation, minimizing surface recombination. The tight confinement in the nanopores is critical to avoid surface charge recombination and to obtain high photochemical quantum yields. The results obtained so far, although the field is still in its infancy, leave no doubts on the possibilities of applying photochemistry in the confined space of carbon pores in various strategic disciplines such as degradation of pollutants, solar water splitting, or CO(2) mitigation. Perhaps the future of photovoltaics and smart‐self‐cleaning or photocorrosion coatings is in exploring the use of nanoporous carbons.