Cargando…
Origin and Perspectives of the Photochemical Activity of Nanoporous Carbons
Even though, owing to the complexity of nanoporous carbons' structure and chemistry, the origin of their photoactivity is not yet fully understood, the recent works addressed here clearly show the ability of these materials to absorb light and convert the photogenerated charge carriers into che...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145414/ https://www.ncbi.nlm.nih.gov/pubmed/30250787 http://dx.doi.org/10.1002/advs.201800293 |
_version_ | 1783356261742411776 |
---|---|
author | Bandosz, Teresa J. Ania, Conchi O. |
author_facet | Bandosz, Teresa J. Ania, Conchi O. |
author_sort | Bandosz, Teresa J. |
collection | PubMed |
description | Even though, owing to the complexity of nanoporous carbons' structure and chemistry, the origin of their photoactivity is not yet fully understood, the recent works addressed here clearly show the ability of these materials to absorb light and convert the photogenerated charge carriers into chemical reactions. In many aspects, nanoporous carbons are similar to graphene; their pores are built of distorted graphene layers and defects that arise from their amorphicity and reactivity. As in graphene, the photoactivity of nanoporous carbons is linked to their semiconducting, optical, and electronic properties, defined by the composition and structural defects in the distorted graphene layers that facilitate the exciton splitting and charge separation, minimizing surface recombination. The tight confinement in the nanopores is critical to avoid surface charge recombination and to obtain high photochemical quantum yields. The results obtained so far, although the field is still in its infancy, leave no doubts on the possibilities of applying photochemistry in the confined space of carbon pores in various strategic disciplines such as degradation of pollutants, solar water splitting, or CO(2) mitigation. Perhaps the future of photovoltaics and smart‐self‐cleaning or photocorrosion coatings is in exploring the use of nanoporous carbons. |
format | Online Article Text |
id | pubmed-6145414 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-61454142018-09-24 Origin and Perspectives of the Photochemical Activity of Nanoporous Carbons Bandosz, Teresa J. Ania, Conchi O. Adv Sci (Weinh) Reviews Even though, owing to the complexity of nanoporous carbons' structure and chemistry, the origin of their photoactivity is not yet fully understood, the recent works addressed here clearly show the ability of these materials to absorb light and convert the photogenerated charge carriers into chemical reactions. In many aspects, nanoporous carbons are similar to graphene; their pores are built of distorted graphene layers and defects that arise from their amorphicity and reactivity. As in graphene, the photoactivity of nanoporous carbons is linked to their semiconducting, optical, and electronic properties, defined by the composition and structural defects in the distorted graphene layers that facilitate the exciton splitting and charge separation, minimizing surface recombination. The tight confinement in the nanopores is critical to avoid surface charge recombination and to obtain high photochemical quantum yields. The results obtained so far, although the field is still in its infancy, leave no doubts on the possibilities of applying photochemistry in the confined space of carbon pores in various strategic disciplines such as degradation of pollutants, solar water splitting, or CO(2) mitigation. Perhaps the future of photovoltaics and smart‐self‐cleaning or photocorrosion coatings is in exploring the use of nanoporous carbons. John Wiley and Sons Inc. 2018-06-20 /pmc/articles/PMC6145414/ /pubmed/30250787 http://dx.doi.org/10.1002/advs.201800293 Text en © 2018 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Reviews Bandosz, Teresa J. Ania, Conchi O. Origin and Perspectives of the Photochemical Activity of Nanoporous Carbons |
title | Origin and Perspectives of the Photochemical Activity of Nanoporous Carbons |
title_full | Origin and Perspectives of the Photochemical Activity of Nanoporous Carbons |
title_fullStr | Origin and Perspectives of the Photochemical Activity of Nanoporous Carbons |
title_full_unstemmed | Origin and Perspectives of the Photochemical Activity of Nanoporous Carbons |
title_short | Origin and Perspectives of the Photochemical Activity of Nanoporous Carbons |
title_sort | origin and perspectives of the photochemical activity of nanoporous carbons |
topic | Reviews |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145414/ https://www.ncbi.nlm.nih.gov/pubmed/30250787 http://dx.doi.org/10.1002/advs.201800293 |
work_keys_str_mv | AT bandoszteresaj originandperspectivesofthephotochemicalactivityofnanoporouscarbons AT aniaconchio originandperspectivesofthephotochemicalactivityofnanoporouscarbons |