Cargando…

Distinct urinary glycoprotein signatures in prostate cancer patients

Novel biomarkers are needed to complement prostate specific antigen (PSA) in prostate cancer (PCa) diagnostic screening programs. Glycoproteins represent a hitherto largely untapped resource with a great potential as specific and sensitive tumor biomarkers due to their abundance in bodily fluids and...

Descripción completa

Detalles Bibliográficos
Autores principales: Kawahara, Rebeca, Ortega, Fabio, Rosa-Fernandes, Livia, Guimarães, Vanessa, Quina, Daniel, Nahas, Willian, Schwämmle, Veit, Srougi, Miguel, Leite, Katia R.M., Thaysen-Andersen, Morten, Larsen, Martin R., Palmisano, Giuseppe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145689/
https://www.ncbi.nlm.nih.gov/pubmed/30237853
http://dx.doi.org/10.18632/oncotarget.26005
Descripción
Sumario:Novel biomarkers are needed to complement prostate specific antigen (PSA) in prostate cancer (PCa) diagnostic screening programs. Glycoproteins represent a hitherto largely untapped resource with a great potential as specific and sensitive tumor biomarkers due to their abundance in bodily fluids and their dynamic and cancer-associated glycosylation. However, quantitative glycoproteomics strategies to detect potential glycoprotein cancer markers from complex biospecimen are only just emerging. Here, we describe a glycoproteomics strategy for deep quantitative mapping of N- and O-glycoproteins in urine with a view to investigate the diagnostic value of the glycoproteome to discriminate PCa from benign prostatic hyperplasia (BPH), two conditions that remain difficult to clinically stratify. Total protein extracts were obtained, concentrated and digested from urine of six PCa patients (Gleason score 7) and six BPH patients. The resulting peptide mixtures were TMT-labeled and mixed prior to a multi-faceted sample processing including hydrophilic interaction liquid chromatography (HILIC) and titanium dioxide SPE based enrichment, endo-/exoglycosidase treatment and HILIC-HPLC pre-fractionation. The isolated N- and O-glycopeptides were detected and quantified using high resolution mass spectrometry. We accurately quantified 729 N-glycoproteins spanning 1,310 unique N-glycosylation sites and observed 954 and 965 unique intact N- and O-glycopeptides, respectively, across the two disease conditions. Importantly, a panel of 56 intact N-glycopeptides perfectly discriminated PCa and BPH (ROC: AUC = 1). This study has generated a panel of intact glycopeptides that has a potential for PCa detection.