Cargando…

Dietary niches of terrestrial cercopithecines from the Plio-Pleistocene Shungura Formation, Ethiopia: evidence from Dental Microwear Texture Analysis

This study aims to explore the feeding ecology of two terrestrial papionins, Papio and Theropithecus from the Shungura Formation in Ethiopia, the most complete stratigraphic and paleontological record of the African Plio-Pleistocene. Two aspects were evaluated using Dental Microwear Texture Analysis...

Descripción completa

Detalles Bibliográficos
Autores principales: Martin, Florian, Plastiras, Chris-Alexander, Merceron, Gildas, Souron, Antoine, Boisserie, Jean-Renaud
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145942/
https://www.ncbi.nlm.nih.gov/pubmed/30232366
http://dx.doi.org/10.1038/s41598-018-32092-z
Descripción
Sumario:This study aims to explore the feeding ecology of two terrestrial papionins, Papio and Theropithecus from the Shungura Formation in Ethiopia, the most complete stratigraphic and paleontological record of the African Plio-Pleistocene. Two aspects were evaluated using Dental Microwear Texture Analysis: differences in diet between the extinct genera and their extant relatives, and any potential dietary fluctuations over time. Amongst more than 2,500 cercopithecid dental remains, 154 Theropithecus molars and 60 Papio molars were considered. Thirty-nine extant wild baboons and 20 wild geladas were also considered. The results show that diets of extinct monkeys from Member G already differed between genera as it is the case for their extant representatives. The shearing facets on the Theropithecus molars display significant variations in microwear textures, suggesting several dietary shifts over time. Two events point to higher intakes of herbaceous monocots (tougher than dicots foliages), at about 2.91 Ma (between members B and C) and at 2.32 Ma (between members E and F). These two events are separated by an inverse trend at about 2.53 Ma (between members C and D). Some of these variations, such as between members E and F are supported by the enamel carbon isotopic composition of herbivorous mammals and with paleovegetation evidence.