Cargando…
ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI
Performance of models highly depend not only on the used algorithm but also the data set it was applied to. This makes the comparison of newly developed tools to previously published approaches difficult. Either researchers need to implement others' algorithms first, to establish an adequate be...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6146088/ https://www.ncbi.nlm.nih.gov/pubmed/30271370 http://dx.doi.org/10.3389/fneur.2018.00679 |
_version_ | 1783356336782704640 |
---|---|
author | Winzeck, Stefan Hakim, Arsany McKinley, Richard Pinto, José A. A. D. S. R. Alves, Victor Silva, Carlos Pisov, Maxim Krivov, Egor Belyaev, Mikhail Monteiro, Miguel Oliveira, Arlindo Choi, Youngwon Paik, Myunghee Cho Kwon, Yongchan Lee, Hanbyul Kim, Beom Joon Won, Joong-Ho Islam, Mobarakol Ren, Hongliang Robben, David Suetens, Paul Gong, Enhao Niu, Yilin Xu, Junshen Pauly, John M. Lucas, Christian Heinrich, Mattias P. Rivera, Luis C. Castillo, Laura S. Daza, Laura A. Beers, Andrew L. Arbelaezs, Pablo Maier, Oskar Chang, Ken Brown, James M. Kalpathy-Cramer, Jayashree Zaharchuk, Greg Wiest, Roland Reyes, Mauricio |
author_facet | Winzeck, Stefan Hakim, Arsany McKinley, Richard Pinto, José A. A. D. S. R. Alves, Victor Silva, Carlos Pisov, Maxim Krivov, Egor Belyaev, Mikhail Monteiro, Miguel Oliveira, Arlindo Choi, Youngwon Paik, Myunghee Cho Kwon, Yongchan Lee, Hanbyul Kim, Beom Joon Won, Joong-Ho Islam, Mobarakol Ren, Hongliang Robben, David Suetens, Paul Gong, Enhao Niu, Yilin Xu, Junshen Pauly, John M. Lucas, Christian Heinrich, Mattias P. Rivera, Luis C. Castillo, Laura S. Daza, Laura A. Beers, Andrew L. Arbelaezs, Pablo Maier, Oskar Chang, Ken Brown, James M. Kalpathy-Cramer, Jayashree Zaharchuk, Greg Wiest, Roland Reyes, Mauricio |
author_sort | Winzeck, Stefan |
collection | PubMed |
description | Performance of models highly depend not only on the used algorithm but also the data set it was applied to. This makes the comparison of newly developed tools to previously published approaches difficult. Either researchers need to implement others' algorithms first, to establish an adequate benchmark on their data, or a direct comparison of new and old techniques is infeasible. The Ischemic Stroke Lesion Segmentation (ISLES) challenge, which has ran now consecutively for 3 years, aims to address this problem of comparability. ISLES 2016 and 2017 focused on lesion outcome prediction after ischemic stroke: By providing a uniformly pre-processed data set, researchers from all over the world could apply their algorithm directly. A total of nine teams participated in ISLES 2015, and 15 teams participated in ISLES 2016. Their performance was evaluated in a fair and transparent way to identify the state-of-the-art among all submissions. Top ranked teams almost always employed deep learning tools, which were predominately convolutional neural networks (CNNs). Despite the great efforts, lesion outcome prediction persists challenging. The annotated data set remains publicly available and new approaches can be compared directly via the online evaluation system, serving as a continuing benchmark (www.isles-challenge.org). |
format | Online Article Text |
id | pubmed-6146088 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-61460882018-09-28 ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI Winzeck, Stefan Hakim, Arsany McKinley, Richard Pinto, José A. A. D. S. R. Alves, Victor Silva, Carlos Pisov, Maxim Krivov, Egor Belyaev, Mikhail Monteiro, Miguel Oliveira, Arlindo Choi, Youngwon Paik, Myunghee Cho Kwon, Yongchan Lee, Hanbyul Kim, Beom Joon Won, Joong-Ho Islam, Mobarakol Ren, Hongliang Robben, David Suetens, Paul Gong, Enhao Niu, Yilin Xu, Junshen Pauly, John M. Lucas, Christian Heinrich, Mattias P. Rivera, Luis C. Castillo, Laura S. Daza, Laura A. Beers, Andrew L. Arbelaezs, Pablo Maier, Oskar Chang, Ken Brown, James M. Kalpathy-Cramer, Jayashree Zaharchuk, Greg Wiest, Roland Reyes, Mauricio Front Neurol Neurology Performance of models highly depend not only on the used algorithm but also the data set it was applied to. This makes the comparison of newly developed tools to previously published approaches difficult. Either researchers need to implement others' algorithms first, to establish an adequate benchmark on their data, or a direct comparison of new and old techniques is infeasible. The Ischemic Stroke Lesion Segmentation (ISLES) challenge, which has ran now consecutively for 3 years, aims to address this problem of comparability. ISLES 2016 and 2017 focused on lesion outcome prediction after ischemic stroke: By providing a uniformly pre-processed data set, researchers from all over the world could apply their algorithm directly. A total of nine teams participated in ISLES 2015, and 15 teams participated in ISLES 2016. Their performance was evaluated in a fair and transparent way to identify the state-of-the-art among all submissions. Top ranked teams almost always employed deep learning tools, which were predominately convolutional neural networks (CNNs). Despite the great efforts, lesion outcome prediction persists challenging. The annotated data set remains publicly available and new approaches can be compared directly via the online evaluation system, serving as a continuing benchmark (www.isles-challenge.org). Frontiers Media S.A. 2018-09-13 /pmc/articles/PMC6146088/ /pubmed/30271370 http://dx.doi.org/10.3389/fneur.2018.00679 Text en Copyright © 2018 Winzeck, Hakim, McKinley, Pinto, Alves, Silva, Pisov, Krivov, Belyaev, Monteiro, Oliveira, Choi, Paik, Kwon, Lee, Kim, Won, Islam, Ren, Robben, Suetens, Gong, Niu, Xu, Pauly, Lucas, Heinrich, Rivera, Castillo, Daza, Beers, Arbelaezs, Maier, Chang, Brown, Kalpathy-Cramer, Zaharchuk, Wiest and Reyes. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neurology Winzeck, Stefan Hakim, Arsany McKinley, Richard Pinto, José A. A. D. S. R. Alves, Victor Silva, Carlos Pisov, Maxim Krivov, Egor Belyaev, Mikhail Monteiro, Miguel Oliveira, Arlindo Choi, Youngwon Paik, Myunghee Cho Kwon, Yongchan Lee, Hanbyul Kim, Beom Joon Won, Joong-Ho Islam, Mobarakol Ren, Hongliang Robben, David Suetens, Paul Gong, Enhao Niu, Yilin Xu, Junshen Pauly, John M. Lucas, Christian Heinrich, Mattias P. Rivera, Luis C. Castillo, Laura S. Daza, Laura A. Beers, Andrew L. Arbelaezs, Pablo Maier, Oskar Chang, Ken Brown, James M. Kalpathy-Cramer, Jayashree Zaharchuk, Greg Wiest, Roland Reyes, Mauricio ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI |
title | ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI |
title_full | ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI |
title_fullStr | ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI |
title_full_unstemmed | ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI |
title_short | ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI |
title_sort | isles 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral mri |
topic | Neurology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6146088/ https://www.ncbi.nlm.nih.gov/pubmed/30271370 http://dx.doi.org/10.3389/fneur.2018.00679 |
work_keys_str_mv | AT winzeckstefan isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT hakimarsany isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT mckinleyrichard isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT pintojoseaadsr isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT alvesvictor isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT silvacarlos isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT pisovmaxim isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT krivovegor isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT belyaevmikhail isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT monteiromiguel isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT oliveiraarlindo isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT choiyoungwon isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT paikmyungheecho isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT kwonyongchan isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT leehanbyul isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT kimbeomjoon isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT wonjoongho isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT islammobarakol isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT renhongliang isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT robbendavid isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT suetenspaul isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT gongenhao isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT niuyilin isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT xujunshen isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT paulyjohnm isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT lucaschristian isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT heinrichmattiasp isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT riveraluisc isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT castillolauras isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT dazalauraa isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT beersandrewl isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT arbelaezspablo isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT maieroskar isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT changken isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT brownjamesm isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT kalpathycramerjayashree isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT zaharchukgreg isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT wiestroland isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri AT reyesmauricio isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri |