Cargando…

ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI

Performance of models highly depend not only on the used algorithm but also the data set it was applied to. This makes the comparison of newly developed tools to previously published approaches difficult. Either researchers need to implement others' algorithms first, to establish an adequate be...

Descripción completa

Detalles Bibliográficos
Autores principales: Winzeck, Stefan, Hakim, Arsany, McKinley, Richard, Pinto, José A. A. D. S. R., Alves, Victor, Silva, Carlos, Pisov, Maxim, Krivov, Egor, Belyaev, Mikhail, Monteiro, Miguel, Oliveira, Arlindo, Choi, Youngwon, Paik, Myunghee Cho, Kwon, Yongchan, Lee, Hanbyul, Kim, Beom Joon, Won, Joong-Ho, Islam, Mobarakol, Ren, Hongliang, Robben, David, Suetens, Paul, Gong, Enhao, Niu, Yilin, Xu, Junshen, Pauly, John M., Lucas, Christian, Heinrich, Mattias P., Rivera, Luis C., Castillo, Laura S., Daza, Laura A., Beers, Andrew L., Arbelaezs, Pablo, Maier, Oskar, Chang, Ken, Brown, James M., Kalpathy-Cramer, Jayashree, Zaharchuk, Greg, Wiest, Roland, Reyes, Mauricio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6146088/
https://www.ncbi.nlm.nih.gov/pubmed/30271370
http://dx.doi.org/10.3389/fneur.2018.00679
_version_ 1783356336782704640
author Winzeck, Stefan
Hakim, Arsany
McKinley, Richard
Pinto, José A. A. D. S. R.
Alves, Victor
Silva, Carlos
Pisov, Maxim
Krivov, Egor
Belyaev, Mikhail
Monteiro, Miguel
Oliveira, Arlindo
Choi, Youngwon
Paik, Myunghee Cho
Kwon, Yongchan
Lee, Hanbyul
Kim, Beom Joon
Won, Joong-Ho
Islam, Mobarakol
Ren, Hongliang
Robben, David
Suetens, Paul
Gong, Enhao
Niu, Yilin
Xu, Junshen
Pauly, John M.
Lucas, Christian
Heinrich, Mattias P.
Rivera, Luis C.
Castillo, Laura S.
Daza, Laura A.
Beers, Andrew L.
Arbelaezs, Pablo
Maier, Oskar
Chang, Ken
Brown, James M.
Kalpathy-Cramer, Jayashree
Zaharchuk, Greg
Wiest, Roland
Reyes, Mauricio
author_facet Winzeck, Stefan
Hakim, Arsany
McKinley, Richard
Pinto, José A. A. D. S. R.
Alves, Victor
Silva, Carlos
Pisov, Maxim
Krivov, Egor
Belyaev, Mikhail
Monteiro, Miguel
Oliveira, Arlindo
Choi, Youngwon
Paik, Myunghee Cho
Kwon, Yongchan
Lee, Hanbyul
Kim, Beom Joon
Won, Joong-Ho
Islam, Mobarakol
Ren, Hongliang
Robben, David
Suetens, Paul
Gong, Enhao
Niu, Yilin
Xu, Junshen
Pauly, John M.
Lucas, Christian
Heinrich, Mattias P.
Rivera, Luis C.
Castillo, Laura S.
Daza, Laura A.
Beers, Andrew L.
Arbelaezs, Pablo
Maier, Oskar
Chang, Ken
Brown, James M.
Kalpathy-Cramer, Jayashree
Zaharchuk, Greg
Wiest, Roland
Reyes, Mauricio
author_sort Winzeck, Stefan
collection PubMed
description Performance of models highly depend not only on the used algorithm but also the data set it was applied to. This makes the comparison of newly developed tools to previously published approaches difficult. Either researchers need to implement others' algorithms first, to establish an adequate benchmark on their data, or a direct comparison of new and old techniques is infeasible. The Ischemic Stroke Lesion Segmentation (ISLES) challenge, which has ran now consecutively for 3 years, aims to address this problem of comparability. ISLES 2016 and 2017 focused on lesion outcome prediction after ischemic stroke: By providing a uniformly pre-processed data set, researchers from all over the world could apply their algorithm directly. A total of nine teams participated in ISLES 2015, and 15 teams participated in ISLES 2016. Their performance was evaluated in a fair and transparent way to identify the state-of-the-art among all submissions. Top ranked teams almost always employed deep learning tools, which were predominately convolutional neural networks (CNNs). Despite the great efforts, lesion outcome prediction persists challenging. The annotated data set remains publicly available and new approaches can be compared directly via the online evaluation system, serving as a continuing benchmark (www.isles-challenge.org).
format Online
Article
Text
id pubmed-6146088
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-61460882018-09-28 ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI Winzeck, Stefan Hakim, Arsany McKinley, Richard Pinto, José A. A. D. S. R. Alves, Victor Silva, Carlos Pisov, Maxim Krivov, Egor Belyaev, Mikhail Monteiro, Miguel Oliveira, Arlindo Choi, Youngwon Paik, Myunghee Cho Kwon, Yongchan Lee, Hanbyul Kim, Beom Joon Won, Joong-Ho Islam, Mobarakol Ren, Hongliang Robben, David Suetens, Paul Gong, Enhao Niu, Yilin Xu, Junshen Pauly, John M. Lucas, Christian Heinrich, Mattias P. Rivera, Luis C. Castillo, Laura S. Daza, Laura A. Beers, Andrew L. Arbelaezs, Pablo Maier, Oskar Chang, Ken Brown, James M. Kalpathy-Cramer, Jayashree Zaharchuk, Greg Wiest, Roland Reyes, Mauricio Front Neurol Neurology Performance of models highly depend not only on the used algorithm but also the data set it was applied to. This makes the comparison of newly developed tools to previously published approaches difficult. Either researchers need to implement others' algorithms first, to establish an adequate benchmark on their data, or a direct comparison of new and old techniques is infeasible. The Ischemic Stroke Lesion Segmentation (ISLES) challenge, which has ran now consecutively for 3 years, aims to address this problem of comparability. ISLES 2016 and 2017 focused on lesion outcome prediction after ischemic stroke: By providing a uniformly pre-processed data set, researchers from all over the world could apply their algorithm directly. A total of nine teams participated in ISLES 2015, and 15 teams participated in ISLES 2016. Their performance was evaluated in a fair and transparent way to identify the state-of-the-art among all submissions. Top ranked teams almost always employed deep learning tools, which were predominately convolutional neural networks (CNNs). Despite the great efforts, lesion outcome prediction persists challenging. The annotated data set remains publicly available and new approaches can be compared directly via the online evaluation system, serving as a continuing benchmark (www.isles-challenge.org). Frontiers Media S.A. 2018-09-13 /pmc/articles/PMC6146088/ /pubmed/30271370 http://dx.doi.org/10.3389/fneur.2018.00679 Text en Copyright © 2018 Winzeck, Hakim, McKinley, Pinto, Alves, Silva, Pisov, Krivov, Belyaev, Monteiro, Oliveira, Choi, Paik, Kwon, Lee, Kim, Won, Islam, Ren, Robben, Suetens, Gong, Niu, Xu, Pauly, Lucas, Heinrich, Rivera, Castillo, Daza, Beers, Arbelaezs, Maier, Chang, Brown, Kalpathy-Cramer, Zaharchuk, Wiest and Reyes. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neurology
Winzeck, Stefan
Hakim, Arsany
McKinley, Richard
Pinto, José A. A. D. S. R.
Alves, Victor
Silva, Carlos
Pisov, Maxim
Krivov, Egor
Belyaev, Mikhail
Monteiro, Miguel
Oliveira, Arlindo
Choi, Youngwon
Paik, Myunghee Cho
Kwon, Yongchan
Lee, Hanbyul
Kim, Beom Joon
Won, Joong-Ho
Islam, Mobarakol
Ren, Hongliang
Robben, David
Suetens, Paul
Gong, Enhao
Niu, Yilin
Xu, Junshen
Pauly, John M.
Lucas, Christian
Heinrich, Mattias P.
Rivera, Luis C.
Castillo, Laura S.
Daza, Laura A.
Beers, Andrew L.
Arbelaezs, Pablo
Maier, Oskar
Chang, Ken
Brown, James M.
Kalpathy-Cramer, Jayashree
Zaharchuk, Greg
Wiest, Roland
Reyes, Mauricio
ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI
title ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI
title_full ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI
title_fullStr ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI
title_full_unstemmed ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI
title_short ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI
title_sort isles 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral mri
topic Neurology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6146088/
https://www.ncbi.nlm.nih.gov/pubmed/30271370
http://dx.doi.org/10.3389/fneur.2018.00679
work_keys_str_mv AT winzeckstefan isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT hakimarsany isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT mckinleyrichard isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT pintojoseaadsr isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT alvesvictor isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT silvacarlos isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT pisovmaxim isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT krivovegor isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT belyaevmikhail isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT monteiromiguel isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT oliveiraarlindo isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT choiyoungwon isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT paikmyungheecho isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT kwonyongchan isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT leehanbyul isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT kimbeomjoon isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT wonjoongho isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT islammobarakol isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT renhongliang isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT robbendavid isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT suetenspaul isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT gongenhao isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT niuyilin isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT xujunshen isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT paulyjohnm isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT lucaschristian isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT heinrichmattiasp isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT riveraluisc isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT castillolauras isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT dazalauraa isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT beersandrewl isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT arbelaezspablo isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT maieroskar isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT changken isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT brownjamesm isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT kalpathycramerjayashree isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT zaharchukgreg isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT wiestroland isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri
AT reyesmauricio isles2016and2017benchmarkingischemicstrokelesionoutcomepredictionbasedonmultispectralmri