Cargando…
Assisting document triage for human kinome curation via machine learning
In the era of data explosion, the increasing frequency of published articles presents unorthodox challenges to fulfill specific curation requirements for bio-literature databases. Recognizing these demands, we designed a document triage system with automatic methods that can improve efficiency to re...
Autores principales: | Hsu, Yi-Yu, Wei, Chih-Hsuan, Lu, Zhiyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6146134/ https://www.ncbi.nlm.nih.gov/pubmed/30239677 http://dx.doi.org/10.1093/database/bay091 |
Ejemplares similares
-
Overview of the BioCreative VI text-mining services for Kinome Curation Track
por: Gobeill, Julien, et al.
Publicado: (2018) -
Scaling up data curation using deep learning: An application to literature triage in genomic variation resources
por: Lee, Kyubum, et al.
Publicado: (2018) -
Cost sensitive hierarchical document classification to triage PubMed abstracts for manual curation
por: Seymour, Emily, et al.
Publicado: (2011) -
CoIN: a network analysis for document triage
por: Hsu, Yi-Yu, et al.
Publicado: (2013) -
Polypharmacology Within the Full Kinome: a Machine Learning Approach
por: Jones, Derek, et al.
Publicado: (2018)