Cargando…
Alcohol Synthesis over Pre-Reduced Activated Carbon-Supported Molybdenum-Based Catalysts
Activated carbon (AC)-supported molybdenum catalysts, either with or without a potassium promoter, were prepared by the incipient wetness impregnation method. The materials were characterized using differential thermal analysis (DTA) and temperature programmed reduction (TPR), and were used for mixe...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2003
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6146892/ http://dx.doi.org/10.3390/80100013 |
_version_ | 1783356478716903424 |
---|---|
author | Li, Xianguo Feng, Lijuan Zhang, Lijun Dadyburjor, Dady B. Kugler, Edwin L. |
author_facet | Li, Xianguo Feng, Lijuan Zhang, Lijun Dadyburjor, Dady B. Kugler, Edwin L. |
author_sort | Li, Xianguo |
collection | PubMed |
description | Activated carbon (AC)-supported molybdenum catalysts, either with or without a potassium promoter, were prepared by the incipient wetness impregnation method. The materials were characterized using differential thermal analysis (DTA) and temperature programmed reduction (TPR), and were used for mixed alcohol synthesis from syngas (CO+H(2)). DTA results showed that a new phase, related to the interaction between Mo species and the AC support, is formed during the calcination of the Mo/AC catalyst, and the introduction of a K promoter has noticeable effect on the interaction. TPR results indicated that the Mo is more difficult to reduce after being placed onto the AC support, and the addition of a K promoter greatly promotes the formation of Mo species reducible at relatively low temperatures, while it retards the generation of Mo species that are reducible only at higher temperatures. These differences in the reduction behavior of the catalysts are atributed to the interaction between the active components (Mo and K) and the support. Potassium-doping significantly promotes the formation of alcohols at the expense of CO conversion, especially to hydrocarbons. It is postulated that Mo species with intermediate valence values (averaged around +3.5) are more likely to be the active phase(s) for alcohol synthesis from CO hydrogenation, while those with lower Mo valences are probably responsible for the production of hydrocarbons. |
format | Online Article Text |
id | pubmed-6146892 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2003 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-61468922018-11-19 Alcohol Synthesis over Pre-Reduced Activated Carbon-Supported Molybdenum-Based Catalysts Li, Xianguo Feng, Lijuan Zhang, Lijun Dadyburjor, Dady B. Kugler, Edwin L. Molecules Article Activated carbon (AC)-supported molybdenum catalysts, either with or without a potassium promoter, were prepared by the incipient wetness impregnation method. The materials were characterized using differential thermal analysis (DTA) and temperature programmed reduction (TPR), and were used for mixed alcohol synthesis from syngas (CO+H(2)). DTA results showed that a new phase, related to the interaction between Mo species and the AC support, is formed during the calcination of the Mo/AC catalyst, and the introduction of a K promoter has noticeable effect on the interaction. TPR results indicated that the Mo is more difficult to reduce after being placed onto the AC support, and the addition of a K promoter greatly promotes the formation of Mo species reducible at relatively low temperatures, while it retards the generation of Mo species that are reducible only at higher temperatures. These differences in the reduction behavior of the catalysts are atributed to the interaction between the active components (Mo and K) and the support. Potassium-doping significantly promotes the formation of alcohols at the expense of CO conversion, especially to hydrocarbons. It is postulated that Mo species with intermediate valence values (averaged around +3.5) are more likely to be the active phase(s) for alcohol synthesis from CO hydrogenation, while those with lower Mo valences are probably responsible for the production of hydrocarbons. MDPI 2003-01-31 /pmc/articles/PMC6146892/ http://dx.doi.org/10.3390/80100013 Text en © 2003 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes. |
spellingShingle | Article Li, Xianguo Feng, Lijuan Zhang, Lijun Dadyburjor, Dady B. Kugler, Edwin L. Alcohol Synthesis over Pre-Reduced Activated Carbon-Supported Molybdenum-Based Catalysts |
title | Alcohol Synthesis over Pre-Reduced Activated Carbon-Supported Molybdenum-Based Catalysts |
title_full | Alcohol Synthesis over Pre-Reduced Activated Carbon-Supported Molybdenum-Based Catalysts |
title_fullStr | Alcohol Synthesis over Pre-Reduced Activated Carbon-Supported Molybdenum-Based Catalysts |
title_full_unstemmed | Alcohol Synthesis over Pre-Reduced Activated Carbon-Supported Molybdenum-Based Catalysts |
title_short | Alcohol Synthesis over Pre-Reduced Activated Carbon-Supported Molybdenum-Based Catalysts |
title_sort | alcohol synthesis over pre-reduced activated carbon-supported molybdenum-based catalysts |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6146892/ http://dx.doi.org/10.3390/80100013 |
work_keys_str_mv | AT lixianguo alcoholsynthesisoverprereducedactivatedcarbonsupportedmolybdenumbasedcatalysts AT fenglijuan alcoholsynthesisoverprereducedactivatedcarbonsupportedmolybdenumbasedcatalysts AT zhanglijun alcoholsynthesisoverprereducedactivatedcarbonsupportedmolybdenumbasedcatalysts AT dadyburjordadyb alcoholsynthesisoverprereducedactivatedcarbonsupportedmolybdenumbasedcatalysts AT kugleredwinl alcoholsynthesisoverprereducedactivatedcarbonsupportedmolybdenumbasedcatalysts |