Cargando…
Molecular Dynamics Simulations of Nanochannel Flows at Low Reynolds Numbers
In this paper we use molecular dynamics (MD) simulations to study nano- channel flows at low Reynolds numbers and present some new interesting results. We investigated a simple fluid flowing through channels of different shapes at the nano level. The Weeks-Chandler-Anderson potentials with different...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2003
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6146932/ http://dx.doi.org/10.3390/80100193 |
Sumario: | In this paper we use molecular dynamics (MD) simulations to study nano- channel flows at low Reynolds numbers and present some new interesting results. We investigated a simple fluid flowing through channels of different shapes at the nano level. The Weeks-Chandler-Anderson potentials with different interaction strength factors are adopted for the interaction forces between fluid-fluid and fluid-wall molecules. In order to keep the temperature at the required level, a Gaussian thermostat is employed in our MD simulations. Comparing velocities and other flow parameters obtained from the MD simulations with those predicted by the classical Navier-Stokes equations at same Reynolds numbers, we find that both results agree with each other qualitatively in the central area of a nanochannel. However, large deviation usually exists in areas far from the core. For certain complex nanochannel flow geometry, the MD simulations reveal the generation and development of nano-size vortices due to the large momenta of molecules in the near-wall region while the traditional Navier-Stokes equations with the non-slip boundary condition at low Reynolds numbers cannot predict the similar phenomena. It is shown that although the Navier-Stokes equations are still partially valid, they fail to give whole details for nanochannel flows. |
---|