Cargando…
Electron microscopic observation of human auricular chondrocytes transplanted into peritoneal cavity of nude mice for cartilage regeneration
Restoration of damaged cartilage tissue has been deemed futile with current treatments. Although there have been many studies on cartilage regeneration thus far, there is no report that chondrocytes were completely re-differentiated in vitro. The clarification of cellular composition and matrix prod...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japanese Society for Regenerative Medicine
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6147154/ https://www.ncbi.nlm.nih.gov/pubmed/30271859 http://dx.doi.org/10.1016/j.reth.2017.11.002 |
_version_ | 1783356519264288768 |
---|---|
author | Yamawaki, Takanori Fujihara, Yuko Harata, Mikako Takato, Tsuyoshi Hikita, Atsuhiko Hoshi, Kazuto |
author_facet | Yamawaki, Takanori Fujihara, Yuko Harata, Mikako Takato, Tsuyoshi Hikita, Atsuhiko Hoshi, Kazuto |
author_sort | Yamawaki, Takanori |
collection | PubMed |
description | Restoration of damaged cartilage tissue has been deemed futile with current treatments. Although there have been many studies on cartilage regeneration thus far, there is no report that chondrocytes were completely re-differentiated in vitro. The clarification of cellular composition and matrix production during cartilage regeneration must be elucidated to fabricate viable mature cartilage in vitro. In order to achieve this aim, the chondrocytes cultured on coverslips were transplanted into the peritoneal cavities of mice. At different time points post-transplantation, the cartilage maturation progression and cells composing the regeneration were examined. Cartilage regeneration was confirmed by hematoxylin & eosin (HE) and toluidine blue staining. The maturation progression was carefully examined further by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). At the first and second week time points, various cell shapes were observed using SEM. Chronologically, by the third week, the number of fibers increased, suggesting the progression of extracellular matrix (ECM) maturation. Observation through TEM revealed the chondrocytes located in close proximity to various cells including macrophage-like cells. On the second week, infiltration of lymphocytes and capillary vessels were observed, and after the third week, the chondrocytes had matured and were abundantly releasing extracellular matrix. Chronological observation of transplanted chondrocytes by electron microscopy revealed maturation of chondrocytes and accumulation of matrix during the re-differentiation process. Emerging patterns of host-derived cells such as macrophage-like cells and subsequent appearance of lymphocytes-like cells and angiogenesis were documented, providing crucial context for the identification of the cells responsible for in vivo cartilage regeneration. |
format | Online Article Text |
id | pubmed-6147154 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Japanese Society for Regenerative Medicine |
record_format | MEDLINE/PubMed |
spelling | pubmed-61471542018-09-28 Electron microscopic observation of human auricular chondrocytes transplanted into peritoneal cavity of nude mice for cartilage regeneration Yamawaki, Takanori Fujihara, Yuko Harata, Mikako Takato, Tsuyoshi Hikita, Atsuhiko Hoshi, Kazuto Regen Ther Original Article Restoration of damaged cartilage tissue has been deemed futile with current treatments. Although there have been many studies on cartilage regeneration thus far, there is no report that chondrocytes were completely re-differentiated in vitro. The clarification of cellular composition and matrix production during cartilage regeneration must be elucidated to fabricate viable mature cartilage in vitro. In order to achieve this aim, the chondrocytes cultured on coverslips were transplanted into the peritoneal cavities of mice. At different time points post-transplantation, the cartilage maturation progression and cells composing the regeneration were examined. Cartilage regeneration was confirmed by hematoxylin & eosin (HE) and toluidine blue staining. The maturation progression was carefully examined further by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). At the first and second week time points, various cell shapes were observed using SEM. Chronologically, by the third week, the number of fibers increased, suggesting the progression of extracellular matrix (ECM) maturation. Observation through TEM revealed the chondrocytes located in close proximity to various cells including macrophage-like cells. On the second week, infiltration of lymphocytes and capillary vessels were observed, and after the third week, the chondrocytes had matured and were abundantly releasing extracellular matrix. Chronological observation of transplanted chondrocytes by electron microscopy revealed maturation of chondrocytes and accumulation of matrix during the re-differentiation process. Emerging patterns of host-derived cells such as macrophage-like cells and subsequent appearance of lymphocytes-like cells and angiogenesis were documented, providing crucial context for the identification of the cells responsible for in vivo cartilage regeneration. Japanese Society for Regenerative Medicine 2017-12-15 /pmc/articles/PMC6147154/ /pubmed/30271859 http://dx.doi.org/10.1016/j.reth.2017.11.002 Text en © 2018 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Yamawaki, Takanori Fujihara, Yuko Harata, Mikako Takato, Tsuyoshi Hikita, Atsuhiko Hoshi, Kazuto Electron microscopic observation of human auricular chondrocytes transplanted into peritoneal cavity of nude mice for cartilage regeneration |
title | Electron microscopic observation of human auricular chondrocytes transplanted into peritoneal cavity of nude mice for cartilage regeneration |
title_full | Electron microscopic observation of human auricular chondrocytes transplanted into peritoneal cavity of nude mice for cartilage regeneration |
title_fullStr | Electron microscopic observation of human auricular chondrocytes transplanted into peritoneal cavity of nude mice for cartilage regeneration |
title_full_unstemmed | Electron microscopic observation of human auricular chondrocytes transplanted into peritoneal cavity of nude mice for cartilage regeneration |
title_short | Electron microscopic observation of human auricular chondrocytes transplanted into peritoneal cavity of nude mice for cartilage regeneration |
title_sort | electron microscopic observation of human auricular chondrocytes transplanted into peritoneal cavity of nude mice for cartilage regeneration |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6147154/ https://www.ncbi.nlm.nih.gov/pubmed/30271859 http://dx.doi.org/10.1016/j.reth.2017.11.002 |
work_keys_str_mv | AT yamawakitakanori electronmicroscopicobservationofhumanauricularchondrocytestransplantedintoperitonealcavityofnudemiceforcartilageregeneration AT fujiharayuko electronmicroscopicobservationofhumanauricularchondrocytestransplantedintoperitonealcavityofnudemiceforcartilageregeneration AT haratamikako electronmicroscopicobservationofhumanauricularchondrocytestransplantedintoperitonealcavityofnudemiceforcartilageregeneration AT takatotsuyoshi electronmicroscopicobservationofhumanauricularchondrocytestransplantedintoperitonealcavityofnudemiceforcartilageregeneration AT hikitaatsuhiko electronmicroscopicobservationofhumanauricularchondrocytestransplantedintoperitonealcavityofnudemiceforcartilageregeneration AT hoshikazuto electronmicroscopicobservationofhumanauricularchondrocytestransplantedintoperitonealcavityofnudemiceforcartilageregeneration |