Cargando…
Detection, virulence and genetic diversity of Fusarium species infecting tomato in Northern Pakistan
In addition to the well-known Fusarium oxysporum f.sp. lycopersici, several other Fusarium species are known to cause extensive worldwide crop losses in tomatoes. Prevalence and identities of Fusarium species infecting tomatoes in Northwest Pakistan is currently not known. In this study, we surveyed...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6147440/ https://www.ncbi.nlm.nih.gov/pubmed/30235252 http://dx.doi.org/10.1371/journal.pone.0203613 |
Sumario: | In addition to the well-known Fusarium oxysporum f.sp. lycopersici, several other Fusarium species are known to cause extensive worldwide crop losses in tomatoes. Prevalence and identities of Fusarium species infecting tomatoes in Northwest Pakistan is currently not known. In this study, we surveyed and characterized Fusarium species associated with symptomatic tomatoes in Northwest Pakistan using morphological and molecular analyses. Pathogenicity tests revealed varying degrees of virulence with some Fusarium sp. causing severe disease symptoms whereas others displaying mild symptoms. Molecular identification based on Internal Transcribed Spacer (ITS) region and TEF-1α gene sequencing classified all isolates into four major species with a majority (68.9%) belonging to Fusarium incarnatum-equiseti species complex (FIESC), followed by F. graminearum (20.7%), F. acuminatum (6.8%), and F. solani (6.8%). ISSR analyses revealed substantial genetic variability among all the Fusarium population infecting tomatoes. Genetic distance between populations from the central region and the type strain F.o. f.sp. lycopersici from Florida was the highest (0.3662), whereas between the south and central region was the lowest (0.0298), which showed that genetic exchange is negatively effected by distance. High genetic variability suggests that these Fusarium species have the potential to become a major production constraint for tomato growers. Findings in this report would greatly facilitate identification of Fusarium species in developing countries and would provide groundwork for devising and implementing disease management measures for minimizing losses caused by Fusarium species in tomatoes. |
---|