Cargando…
Deep learning-based quantification of abdominal fat on magnetic resonance images
Obesity is increasingly prevalent and associated with increased risk of developing type 2 diabetes, cardiovascular diseases, and cancer. Magnetic resonance imaging (MRI) is an accurate method for determination of body fat volume and distribution. However, quantifying body fat from numerous MRI slice...
Autores principales: | Grainger, Andrew T., Tustison, Nicholas J., Qing, Kun, Roy, Rene, Berr, Stuart S., Shi, Weibin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6147491/ https://www.ncbi.nlm.nih.gov/pubmed/30235253 http://dx.doi.org/10.1371/journal.pone.0204071 |
Ejemplares similares
-
Quantification of Abdominal Fat in Obese and Healthy Adolescents Using 3 Tesla Magnetic Resonance Imaging and Free Software for Image Analysis
por: Eloi, Juliana Cristina, et al.
Publicado: (2017) -
Quantification of epicardial fat volume using cardiovascular magnetic resonance imaging
por: Teme, Tonye, et al.
Publicado: (2014) -
Abdominal fat quantification using convolutional networks
por: Schneider, Daniel, et al.
Publicado: (2023) -
Using deep learning to predict abdominal age from liver and pancreas magnetic resonance images
por: Le Goallec, Alan, et al.
Publicado: (2022) -
Deep learning auto-segmentation on multi-sequence magnetic resonance images for upper abdominal organs
por: Amjad, Asma, et al.
Publicado: (2023)