Cargando…
Dynamical instability of the electric transport in superconductors
We develop a nonlinear theory of the electronic transport in superconductors in the framework of the time-dependent Ginzburg-Landau (TDGL) equation. We utilize self-consistent Gaussian approximation and reveal the conditions under which the current-voltage V(I) dependence (I–V characteristics) acqui...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6147792/ https://www.ncbi.nlm.nih.gov/pubmed/30237416 http://dx.doi.org/10.1038/s41598-018-32302-8 |
Sumario: | We develop a nonlinear theory of the electronic transport in superconductors in the framework of the time-dependent Ginzburg-Landau (TDGL) equation. We utilize self-consistent Gaussian approximation and reveal the conditions under which the current-voltage V(I) dependence (I–V characteristics) acquires an S-shape form leading to switching instabilities. We demonstrate that in two-dimensions the emergence of such an instability is a hallmark of the Berezinskii-Kosterlitz-Thouless (BKT) transition that we have detected by transport measurements of titanium nitride (TiN) films. Our theoretical findings compare favorably with our experimental results. |
---|