Cargando…

Yellowstone Hot Springs are Organic Chemodiversity Hot Spots

Yellowstone National Park hydrothermal springs were investigated according to their organic geochemistry with a special focus on the Yellowstone hot spring dissolved organic matter (YDOM) that was solid-phase extracted. Here we show that YDOM has a unique chemodiversity that has not yet been observe...

Descripción completa

Detalles Bibliográficos
Autores principales: Gonsior, Michael, Hertkorn, Norbert, Hinman, Nancy, Dvorski, Sabine E.-M., Harir, Mourad, Cooper, William J., Schmitt-Kopplin, Philippe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6147864/
https://www.ncbi.nlm.nih.gov/pubmed/30237444
http://dx.doi.org/10.1038/s41598-018-32593-x
Descripción
Sumario:Yellowstone National Park hydrothermal springs were investigated according to their organic geochemistry with a special focus on the Yellowstone hot spring dissolved organic matter (YDOM) that was solid-phase extracted. Here we show that YDOM has a unique chemodiversity that has not yet been observed anywhere else in aquatic surface environments and that Yellowstone hot springs are organic chemodiversity hot spots. Four main geochemically classified hot spring types (alkaline-chloride, mixed alkaline-chloride, acid-chloride-sulfate and travertine-precipitating) exhibited distinct organic molecular signatures that correlated remarkably well with the known inorganic geochemistry and manifested themselves in excitation emission matrix fluorescence, nuclear magnetic resonance, and ultrahigh resolution mass spectra. YDOM contained thousands of molecular formulas unique to Yellowstone of which 80% contained sulfur, even in low hydrogen sulfide containing alkaline-chloride springs. This unique YDOM reflects the extreme organic geochemistry present in the hydrothermal features of Yellowstone National Park.