Cargando…
Plasmon-induced hot electron transfer in AgNW@TiO(2)@AuNPs nanostructures
Compared to the limited absorption cross-section of conventional photoactive TiO(2) nanoparticles (NPs), plasmonic metallic nanoparticles can efficiently convert photons from an extended spectrum range into energetic carriers because of the localized surface plasmon resonance (LSPR). Using these met...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6148267/ https://www.ncbi.nlm.nih.gov/pubmed/30237426 http://dx.doi.org/10.1038/s41598-018-32510-2 |
_version_ | 1783356729984024576 |
---|---|
author | Cheng, Jiaji Li, Yiwen Plissonneau, Marie Li, Jiagen Li, Junzi Chen, Rui Tang, Zikang Pautrot-d’Alençon, Lauriane He, Tingchao Tréguer-Delapierre, Mona Delville, Marie-Hélène |
author_facet | Cheng, Jiaji Li, Yiwen Plissonneau, Marie Li, Jiagen Li, Junzi Chen, Rui Tang, Zikang Pautrot-d’Alençon, Lauriane He, Tingchao Tréguer-Delapierre, Mona Delville, Marie-Hélène |
author_sort | Cheng, Jiaji |
collection | PubMed |
description | Compared to the limited absorption cross-section of conventional photoactive TiO(2) nanoparticles (NPs), plasmonic metallic nanoparticles can efficiently convert photons from an extended spectrum range into energetic carriers because of the localized surface plasmon resonance (LSPR). Using these metal oxide semiconductors as shells for plasmonic nanoparticles (PNPs) that absorb visible light could extend their applications. The photophysics of such systems is performed using transient absorption measurements and steady extinction simulations and shows that the plasmonic energy transfer from the AgNWs core to the TiO(2) shell results from a hot carrier injection process. Lifetimes obtained from photobleaching decay dynamics suggest that (i) the presence of gold nanoparticles (AuNPs) in AgNWs@TiO(2)@AuNPs systems can further promote the hot carrier transfer process via plasmonic coupling effects and (ii) the carrier dynamics is greatly affected by the shell thickness of TiO(2). This result points out a definite direction to design appropriate nanostructures with tunable charge transfer processes toward photo-induced energy conversion applications. |
format | Online Article Text |
id | pubmed-6148267 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-61482672019-02-12 Plasmon-induced hot electron transfer in AgNW@TiO(2)@AuNPs nanostructures Cheng, Jiaji Li, Yiwen Plissonneau, Marie Li, Jiagen Li, Junzi Chen, Rui Tang, Zikang Pautrot-d’Alençon, Lauriane He, Tingchao Tréguer-Delapierre, Mona Delville, Marie-Hélène Sci Rep Article Compared to the limited absorption cross-section of conventional photoactive TiO(2) nanoparticles (NPs), plasmonic metallic nanoparticles can efficiently convert photons from an extended spectrum range into energetic carriers because of the localized surface plasmon resonance (LSPR). Using these metal oxide semiconductors as shells for plasmonic nanoparticles (PNPs) that absorb visible light could extend their applications. The photophysics of such systems is performed using transient absorption measurements and steady extinction simulations and shows that the plasmonic energy transfer from the AgNWs core to the TiO(2) shell results from a hot carrier injection process. Lifetimes obtained from photobleaching decay dynamics suggest that (i) the presence of gold nanoparticles (AuNPs) in AgNWs@TiO(2)@AuNPs systems can further promote the hot carrier transfer process via plasmonic coupling effects and (ii) the carrier dynamics is greatly affected by the shell thickness of TiO(2). This result points out a definite direction to design appropriate nanostructures with tunable charge transfer processes toward photo-induced energy conversion applications. Nature Publishing Group UK 2018-09-20 /pmc/articles/PMC6148267/ /pubmed/30237426 http://dx.doi.org/10.1038/s41598-018-32510-2 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Cheng, Jiaji Li, Yiwen Plissonneau, Marie Li, Jiagen Li, Junzi Chen, Rui Tang, Zikang Pautrot-d’Alençon, Lauriane He, Tingchao Tréguer-Delapierre, Mona Delville, Marie-Hélène Plasmon-induced hot electron transfer in AgNW@TiO(2)@AuNPs nanostructures |
title | Plasmon-induced hot electron transfer in AgNW@TiO(2)@AuNPs nanostructures |
title_full | Plasmon-induced hot electron transfer in AgNW@TiO(2)@AuNPs nanostructures |
title_fullStr | Plasmon-induced hot electron transfer in AgNW@TiO(2)@AuNPs nanostructures |
title_full_unstemmed | Plasmon-induced hot electron transfer in AgNW@TiO(2)@AuNPs nanostructures |
title_short | Plasmon-induced hot electron transfer in AgNW@TiO(2)@AuNPs nanostructures |
title_sort | plasmon-induced hot electron transfer in agnw@tio(2)@aunps nanostructures |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6148267/ https://www.ncbi.nlm.nih.gov/pubmed/30237426 http://dx.doi.org/10.1038/s41598-018-32510-2 |
work_keys_str_mv | AT chengjiaji plasmoninducedhotelectrontransferinagnwtio2aunpsnanostructures AT liyiwen plasmoninducedhotelectrontransferinagnwtio2aunpsnanostructures AT plissonneaumarie plasmoninducedhotelectrontransferinagnwtio2aunpsnanostructures AT lijiagen plasmoninducedhotelectrontransferinagnwtio2aunpsnanostructures AT lijunzi plasmoninducedhotelectrontransferinagnwtio2aunpsnanostructures AT chenrui plasmoninducedhotelectrontransferinagnwtio2aunpsnanostructures AT tangzikang plasmoninducedhotelectrontransferinagnwtio2aunpsnanostructures AT pautrotdalenconlauriane plasmoninducedhotelectrontransferinagnwtio2aunpsnanostructures AT hetingchao plasmoninducedhotelectrontransferinagnwtio2aunpsnanostructures AT treguerdelapierremona plasmoninducedhotelectrontransferinagnwtio2aunpsnanostructures AT delvillemariehelene plasmoninducedhotelectrontransferinagnwtio2aunpsnanostructures |