Cargando…

Plasmon-induced hot electron transfer in AgNW@TiO(2)@AuNPs nanostructures

Compared to the limited absorption cross-section of conventional photoactive TiO(2) nanoparticles (NPs), plasmonic metallic nanoparticles can efficiently convert photons from an extended spectrum range into energetic carriers because of the localized surface plasmon resonance (LSPR). Using these met...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Jiaji, Li, Yiwen, Plissonneau, Marie, Li, Jiagen, Li, Junzi, Chen, Rui, Tang, Zikang, Pautrot-d’Alençon, Lauriane, He, Tingchao, Tréguer-Delapierre, Mona, Delville, Marie-Hélène
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6148267/
https://www.ncbi.nlm.nih.gov/pubmed/30237426
http://dx.doi.org/10.1038/s41598-018-32510-2
_version_ 1783356729984024576
author Cheng, Jiaji
Li, Yiwen
Plissonneau, Marie
Li, Jiagen
Li, Junzi
Chen, Rui
Tang, Zikang
Pautrot-d’Alençon, Lauriane
He, Tingchao
Tréguer-Delapierre, Mona
Delville, Marie-Hélène
author_facet Cheng, Jiaji
Li, Yiwen
Plissonneau, Marie
Li, Jiagen
Li, Junzi
Chen, Rui
Tang, Zikang
Pautrot-d’Alençon, Lauriane
He, Tingchao
Tréguer-Delapierre, Mona
Delville, Marie-Hélène
author_sort Cheng, Jiaji
collection PubMed
description Compared to the limited absorption cross-section of conventional photoactive TiO(2) nanoparticles (NPs), plasmonic metallic nanoparticles can efficiently convert photons from an extended spectrum range into energetic carriers because of the localized surface plasmon resonance (LSPR). Using these metal oxide semiconductors as shells for plasmonic nanoparticles (PNPs) that absorb visible light could extend their applications. The photophysics of such systems is performed using transient absorption measurements and steady extinction simulations and shows that the plasmonic energy transfer from the AgNWs core to the TiO(2) shell results from a hot carrier injection process. Lifetimes obtained from photobleaching decay dynamics suggest that (i) the presence of gold nanoparticles (AuNPs) in AgNWs@TiO(2)@AuNPs systems can further promote the hot carrier transfer process via plasmonic coupling effects and (ii) the carrier dynamics is greatly affected by the shell thickness of TiO(2). This result points out a definite direction to design appropriate nanostructures with tunable charge transfer processes toward photo-induced energy conversion applications.
format Online
Article
Text
id pubmed-6148267
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-61482672019-02-12 Plasmon-induced hot electron transfer in AgNW@TiO(2)@AuNPs nanostructures Cheng, Jiaji Li, Yiwen Plissonneau, Marie Li, Jiagen Li, Junzi Chen, Rui Tang, Zikang Pautrot-d’Alençon, Lauriane He, Tingchao Tréguer-Delapierre, Mona Delville, Marie-Hélène Sci Rep Article Compared to the limited absorption cross-section of conventional photoactive TiO(2) nanoparticles (NPs), plasmonic metallic nanoparticles can efficiently convert photons from an extended spectrum range into energetic carriers because of the localized surface plasmon resonance (LSPR). Using these metal oxide semiconductors as shells for plasmonic nanoparticles (PNPs) that absorb visible light could extend their applications. The photophysics of such systems is performed using transient absorption measurements and steady extinction simulations and shows that the plasmonic energy transfer from the AgNWs core to the TiO(2) shell results from a hot carrier injection process. Lifetimes obtained from photobleaching decay dynamics suggest that (i) the presence of gold nanoparticles (AuNPs) in AgNWs@TiO(2)@AuNPs systems can further promote the hot carrier transfer process via plasmonic coupling effects and (ii) the carrier dynamics is greatly affected by the shell thickness of TiO(2). This result points out a definite direction to design appropriate nanostructures with tunable charge transfer processes toward photo-induced energy conversion applications. Nature Publishing Group UK 2018-09-20 /pmc/articles/PMC6148267/ /pubmed/30237426 http://dx.doi.org/10.1038/s41598-018-32510-2 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Cheng, Jiaji
Li, Yiwen
Plissonneau, Marie
Li, Jiagen
Li, Junzi
Chen, Rui
Tang, Zikang
Pautrot-d’Alençon, Lauriane
He, Tingchao
Tréguer-Delapierre, Mona
Delville, Marie-Hélène
Plasmon-induced hot electron transfer in AgNW@TiO(2)@AuNPs nanostructures
title Plasmon-induced hot electron transfer in AgNW@TiO(2)@AuNPs nanostructures
title_full Plasmon-induced hot electron transfer in AgNW@TiO(2)@AuNPs nanostructures
title_fullStr Plasmon-induced hot electron transfer in AgNW@TiO(2)@AuNPs nanostructures
title_full_unstemmed Plasmon-induced hot electron transfer in AgNW@TiO(2)@AuNPs nanostructures
title_short Plasmon-induced hot electron transfer in AgNW@TiO(2)@AuNPs nanostructures
title_sort plasmon-induced hot electron transfer in agnw@tio(2)@aunps nanostructures
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6148267/
https://www.ncbi.nlm.nih.gov/pubmed/30237426
http://dx.doi.org/10.1038/s41598-018-32510-2
work_keys_str_mv AT chengjiaji plasmoninducedhotelectrontransferinagnwtio2aunpsnanostructures
AT liyiwen plasmoninducedhotelectrontransferinagnwtio2aunpsnanostructures
AT plissonneaumarie plasmoninducedhotelectrontransferinagnwtio2aunpsnanostructures
AT lijiagen plasmoninducedhotelectrontransferinagnwtio2aunpsnanostructures
AT lijunzi plasmoninducedhotelectrontransferinagnwtio2aunpsnanostructures
AT chenrui plasmoninducedhotelectrontransferinagnwtio2aunpsnanostructures
AT tangzikang plasmoninducedhotelectrontransferinagnwtio2aunpsnanostructures
AT pautrotdalenconlauriane plasmoninducedhotelectrontransferinagnwtio2aunpsnanostructures
AT hetingchao plasmoninducedhotelectrontransferinagnwtio2aunpsnanostructures
AT treguerdelapierremona plasmoninducedhotelectrontransferinagnwtio2aunpsnanostructures
AT delvillemariehelene plasmoninducedhotelectrontransferinagnwtio2aunpsnanostructures