Cargando…
A Robust Manifold Graph Regularized Nonnegative Matrix Factorization Algorithm for Cancer Gene Clustering
Detecting genomes with similar expression patterns using clustering techniques plays an important role in gene expression data analysis. Non-negative matrix factorization (NMF) is an effective method for clustering the analysis of gene expression data. However, the NMF-based method is performed with...
Autores principales: | Zhu, Rong, Liu, Jin-Xing, Zhang, Yuan-Ke, Guo, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6149772/ https://www.ncbi.nlm.nih.gov/pubmed/29207477 http://dx.doi.org/10.3390/molecules22122131 |
Ejemplares similares
-
Limited-Memory Fast Gradient Descent Method for Graph Regularized Nonnegative Matrix Factorization
por: Guan, Naiyang, et al.
Publicado: (2013) -
Correction: Limited-Memory Fast Gradient Descent Method for Graph Regularized Nonnegative Matrix Factorization
por: Guan, Naiyang, et al.
Publicado: (2014) -
Graph regularized L(2,1)-nonnegative matrix factorization for miRNA-disease association prediction
por: Gao, Zhen, et al.
Publicado: (2020) -
Mitral Valve Segmentation Using Robust Nonnegative Matrix Factorization
por: Dröge, Hannah, et al.
Publicado: (2021) -
Gene Feature Extraction Based on Nonnegative Dual Graph Regularized Latent Low-Rank Representation
por: Yang, Guoliang, et al.
Publicado: (2017)