Cargando…
Deep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image
The automatic detection of diabetic retinopathy is of vital importance, as it is the main cause of irreversible vision loss in the working-age population in the developed world. The early detection of diabetic retinopathy occurrence can be very helpful for clinical treatment; although several differ...
Autores principales: | Xu, Kele, Feng, Dawei, Mi, Haibo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6149821/ https://www.ncbi.nlm.nih.gov/pubmed/29168750 http://dx.doi.org/10.3390/molecules22122054 |
Ejemplares similares
-
Automated detection of myopic maculopathy from color fundus photographs using deep convolutional neural networks
por: Li, Jun, et al.
Publicado: (2022) -
Automated fundus ultrasound image classification based on siamese convolutional neural networks with multi-attention
por: Tan, Jiachen, et al.
Publicado: (2023) -
Early detection of diabetic retinopathy based on deep learning and ultra-wide-field fundus images
por: Oh, Kangrok, et al.
Publicado: (2021) -
Microaneurysm detection in fundus images using a two-step convolutional neural network
por: Eftekhari, Noushin, et al.
Publicado: (2019) -
Presentation of a Segmentation Method for a Diabetic Retinopathy Patient's Fundus Region Detection Using a Convolutional Neural Network
por: Valizadeh, Amin, et al.
Publicado: (2021)