Cargando…
Proline-Based Carbamates as Cholinesterase Inhibitors †
Series of twenty-five benzyl (2S)-2-(arylcarbamoyl)pyrrolidine-1-carboxylates was prepared and completely characterized. All the compounds were tested for their in vitro ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and the selectivity of compounds to individual ch...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6150311/ https://www.ncbi.nlm.nih.gov/pubmed/29135926 http://dx.doi.org/10.3390/molecules22111969 |
_version_ | 1783356964834639872 |
---|---|
author | Pizova, Hana Havelkova, Marketa Stepankova, Sarka Bak, Andrzej Kauerova, Tereza Kozik, Violetta Oravec, Michal Imramovsky, Ales Kollar, Peter Bobal, Pavel Jampilek, Josef |
author_facet | Pizova, Hana Havelkova, Marketa Stepankova, Sarka Bak, Andrzej Kauerova, Tereza Kozik, Violetta Oravec, Michal Imramovsky, Ales Kollar, Peter Bobal, Pavel Jampilek, Josef |
author_sort | Pizova, Hana |
collection | PubMed |
description | Series of twenty-five benzyl (2S)-2-(arylcarbamoyl)pyrrolidine-1-carboxylates was prepared and completely characterized. All the compounds were tested for their in vitro ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and the selectivity of compounds to individual cholinesterases was determined. Screening of the cytotoxicity of all the compounds was performed using a human monocytic leukaemia THP-1 cell line, and the compounds demonstrated insignificant toxicity. All the compounds showed rather moderate inhibitory effect against AChE; benzyl (2S)-2-[(2-chlorophenyl)carbamoyl]pyrrolidine-1-carboxylate (IC(50) = 46.35 μM) was the most potent agent. On the other hand, benzyl (2S)-2-[(4-bromophenyl)-] and benzyl (2S)-2-[(2-bromophenyl)carbamoyl]pyrrolidine-1-carboxylates expressed anti-BChE activity (IC(50) = 28.21 and 27.38 μM, respectively) comparable with that of rivastigmine. The ortho-brominated compound as well as benzyl (2S)-2-[(2-hydroxyphenyl)carbamoyl]pyrrolidine-1-carboxylate demonstrated greater selectivity to BChE. The in silico characterization of the structure–inhibitory potency for the set of proline-based carbamates considering electronic, steric and lipophilic properties was provided using comparative molecular surface analysis (CoMSA) and principal component analysis (PCA). Moreover, the systematic space inspection with splitting data into the training/test subset was performed to monitor the statistical estimators performance in the effort to map the probability-guided pharmacophore pattern. The comprehensive screening of the AChE/BChE profile revealed potentially relevant structural and physicochemical features that might be essential for mapping of the carbamates inhibition efficiency indicating qualitative variations exerted on the reaction site by the substituent in the 3′-/4′-position of the phenyl ring. In addition, the investigation was completed by a molecular docking study of recombinant human AChE. |
format | Online Article Text |
id | pubmed-6150311 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-61503112018-11-13 Proline-Based Carbamates as Cholinesterase Inhibitors † Pizova, Hana Havelkova, Marketa Stepankova, Sarka Bak, Andrzej Kauerova, Tereza Kozik, Violetta Oravec, Michal Imramovsky, Ales Kollar, Peter Bobal, Pavel Jampilek, Josef Molecules Article Series of twenty-five benzyl (2S)-2-(arylcarbamoyl)pyrrolidine-1-carboxylates was prepared and completely characterized. All the compounds were tested for their in vitro ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and the selectivity of compounds to individual cholinesterases was determined. Screening of the cytotoxicity of all the compounds was performed using a human monocytic leukaemia THP-1 cell line, and the compounds demonstrated insignificant toxicity. All the compounds showed rather moderate inhibitory effect against AChE; benzyl (2S)-2-[(2-chlorophenyl)carbamoyl]pyrrolidine-1-carboxylate (IC(50) = 46.35 μM) was the most potent agent. On the other hand, benzyl (2S)-2-[(4-bromophenyl)-] and benzyl (2S)-2-[(2-bromophenyl)carbamoyl]pyrrolidine-1-carboxylates expressed anti-BChE activity (IC(50) = 28.21 and 27.38 μM, respectively) comparable with that of rivastigmine. The ortho-brominated compound as well as benzyl (2S)-2-[(2-hydroxyphenyl)carbamoyl]pyrrolidine-1-carboxylate demonstrated greater selectivity to BChE. The in silico characterization of the structure–inhibitory potency for the set of proline-based carbamates considering electronic, steric and lipophilic properties was provided using comparative molecular surface analysis (CoMSA) and principal component analysis (PCA). Moreover, the systematic space inspection with splitting data into the training/test subset was performed to monitor the statistical estimators performance in the effort to map the probability-guided pharmacophore pattern. The comprehensive screening of the AChE/BChE profile revealed potentially relevant structural and physicochemical features that might be essential for mapping of the carbamates inhibition efficiency indicating qualitative variations exerted on the reaction site by the substituent in the 3′-/4′-position of the phenyl ring. In addition, the investigation was completed by a molecular docking study of recombinant human AChE. MDPI 2017-11-14 /pmc/articles/PMC6150311/ /pubmed/29135926 http://dx.doi.org/10.3390/molecules22111969 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pizova, Hana Havelkova, Marketa Stepankova, Sarka Bak, Andrzej Kauerova, Tereza Kozik, Violetta Oravec, Michal Imramovsky, Ales Kollar, Peter Bobal, Pavel Jampilek, Josef Proline-Based Carbamates as Cholinesterase Inhibitors † |
title | Proline-Based Carbamates as Cholinesterase Inhibitors † |
title_full | Proline-Based Carbamates as Cholinesterase Inhibitors † |
title_fullStr | Proline-Based Carbamates as Cholinesterase Inhibitors † |
title_full_unstemmed | Proline-Based Carbamates as Cholinesterase Inhibitors † |
title_short | Proline-Based Carbamates as Cholinesterase Inhibitors † |
title_sort | proline-based carbamates as cholinesterase inhibitors † |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6150311/ https://www.ncbi.nlm.nih.gov/pubmed/29135926 http://dx.doi.org/10.3390/molecules22111969 |
work_keys_str_mv | AT pizovahana prolinebasedcarbamatesascholinesteraseinhibitors AT havelkovamarketa prolinebasedcarbamatesascholinesteraseinhibitors AT stepankovasarka prolinebasedcarbamatesascholinesteraseinhibitors AT bakandrzej prolinebasedcarbamatesascholinesteraseinhibitors AT kauerovatereza prolinebasedcarbamatesascholinesteraseinhibitors AT kozikvioletta prolinebasedcarbamatesascholinesteraseinhibitors AT oravecmichal prolinebasedcarbamatesascholinesteraseinhibitors AT imramovskyales prolinebasedcarbamatesascholinesteraseinhibitors AT kollarpeter prolinebasedcarbamatesascholinesteraseinhibitors AT bobalpavel prolinebasedcarbamatesascholinesteraseinhibitors AT jampilekjosef prolinebasedcarbamatesascholinesteraseinhibitors |