Cargando…

Development of Gallic Acid-Modified Hydrogels Using Interpenetrating Chitosan Network and Evaluation of Their Antioxidant Activity

In this work, antioxidant hydrogels were prepared by the construction of an interpenetrating chitosan network and functionalization with gallic acid. The poly(2-hydroxyethyl methacrylate) p(HEMA)-based hydrogels were first synthesized and subsequently surface-modified with an interpenetrating polyme...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Byungman, Vales, Temmy Pegarro, Cho, Byoung-Ki, Kim, Jong-Ki, Kim, Ho-Joong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6150364/
https://www.ncbi.nlm.nih.gov/pubmed/29140278
http://dx.doi.org/10.3390/molecules22111976
Descripción
Sumario:In this work, antioxidant hydrogels were prepared by the construction of an interpenetrating chitosan network and functionalization with gallic acid. The poly(2-hydroxyethyl methacrylate) p(HEMA)-based hydrogels were first synthesized and subsequently surface-modified with an interpenetrating polymer network (IPN) structure prepared with methacrylamide chitosan via free radical polymerization. The resulting chitosan-IPN hydrogels were surface-functionalized with gallic acid through an amide coupling reaction, which afforded the antioxidant hydrogels. Notably, gallic-acid-modified hydrogels based on a longer chitosan backbone exhibited superior antioxidant activity than their counterpart with a shorter chitosan moiety; this correlated to the amount of gallic acid attached to the chitosan backbone. Moreover, the surface contact angles of the chitosan-modified hydrogels decreased, indicating that surface functionalization of the hydrogels with chitosan-IPN increased the wettability because of the presence of the hydrophilic chitosan network chain. Our study indicates that chitosan-IPN hydrogels may facilitate the development of applications in biomedical devices and ophthalmic materials.