Cargando…

An enriched environment prevents diabetes-induced cognitive impairment in rats by enhancing exosomal miR-146a secretion from endogenous bone marrow-derived mesenchymal stem cells

Increasing evidence suggests that an enriched environment (EE) ameliorates cognitive impairment by promoting repair of brain damage. However, the mechanisms by which this occurs have not been determined. To address this issue, we investigated whether an EE enhanced the capability of endogenous bone...

Descripción completa

Detalles Bibliográficos
Autores principales: Kubota, Kenta, Nakano, Masako, Kobayashi, Eiji, Mizue, Yuka, Chikenji, Takako, Otani, Miho, Nagaishi, Kanna, Fujimiya, Mineko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6150479/
https://www.ncbi.nlm.nih.gov/pubmed/30240403
http://dx.doi.org/10.1371/journal.pone.0204252
Descripción
Sumario:Increasing evidence suggests that an enriched environment (EE) ameliorates cognitive impairment by promoting repair of brain damage. However, the mechanisms by which this occurs have not been determined. To address this issue, we investigated whether an EE enhanced the capability of endogenous bone marrow-derived mesenchymal stem/stromal cells (BM-MSCs) to prevent hippocampal damage due to diabetes by focusing on miRNA carried in BM-MSC-derived exosomes. In diabetic streptozotocin (STZ) rats housed in an EE (STZ/EE), cognitive impairment was significantly reduced, and both neuronal and astroglial damage in the hippocampus was alleviated compared with STZ rats housed in conventional cages (STZ/CC). BM-MSCs isolated from STZ/CC rats had functional and morphological abnormalities that were not detected in STZ/EE BM-MSCs. The miR-146a levels in exosomes in conditioned medium of cultured BM-MSCs and serum from STZ/CC rats were decreased compared with non-diabetic rats, and the level was restored in STZ/EE rats. Thus, the data suggest that increased levels of miR-146a in sera were derived from endogenous BM-MSCs in STZ/EE rats. To examine the possibility that increased miR-146a in serum may exert anti-inflammatory effects on astrocytes in diabetic rats, astrocytes transfected with miR-146a were stimulated with advanced glycation end products (AGEs) to mimic diabetic conditions. The expression of IRAK1, NF-κB, and tumor necrosis factor-α was significantly higher in AGE-stimulated astrocytes, and these factors were decreased in miR-146a-transfected astrocytes. These results suggested that EEs stimulate up-regulation of exosomal miR-146a secretion by endogenous BM-MSCs, which exerts anti-inflammatory effects on damaged astrocytes and prevents diabetes-induced cognitive impairment.