Cargando…
Bio-inspired visual self-localization in real world scenarios using Slow Feature Analysis
We present a biologically motivated model for visual self-localization which extracts a spatial representation of the environment directly from high dimensional image data by employing a single unsupervised learning rule. The resulting representation encodes the position of the camera as slowly vary...
Autores principales: | Metka, Benjamin, Franzius, Mathias, Bauer-Wersing, Ute |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6150500/ https://www.ncbi.nlm.nih.gov/pubmed/30240451 http://dx.doi.org/10.1371/journal.pone.0203994 |
Ejemplares similares
-
Slowness and Sparseness Lead to Place, Head-Direction, and Spatial-View Cells
por: Franzius, Mathias, et al.
Publicado: (2007) -
Analysis of a Scenario for Chaotic Quantal Slowing Down of Inspiration
por: Baesens, C, et al.
Publicado: (2013) -
LPMP: A Bio-Inspired Model for Visual Localization in Challenging Environments
por: Colomer, Sylvain, et al.
Publicado: (2022) -
A bio-inspired microstructure induced by slow injection moulding of cylindrical block copolymers
por: Stasiak, Joanna, et al.
Publicado: (2014) -
Visual outcomes and complications in infantile cataract surgery: a real - world scenario
por: Chattannavar, Goura, et al.
Publicado: (2022)