Cargando…
Predicting residential structures from open source remotely enumerated data using machine learning
Having accurate maps depicting the locations of residential buildings across a region benefits a range of sectors. This is particularly true for public health programs focused on delivering services at the household level, such as indoor residual spraying with insecticide to help prevent malaria. Wh...
Autores principales: | Sturrock, Hugh J. W., Woolheater, Katelyn, Bennett, Adam F., Andrade-Pacheco, Ricardo, Midekisa, Alemayehu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6150517/ https://www.ncbi.nlm.nih.gov/pubmed/30240429 http://dx.doi.org/10.1371/journal.pone.0204399 |
Ejemplares similares
-
Household electricity access in Africa (2000–2013): Closing information gaps with model-based geostatistics
por: Andrade-Pacheco, Ricardo, et al.
Publicado: (2019) -
Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing
por: Midekisa, Alemayehu, et al.
Publicado: (2017) -
Development of an open-source software for isomer enumeration
por: Rieder, Salomé R., et al.
Publicado: (2023) -
Machine learning for enumeration of cell colony forming units
por: Zhang, Louis
Publicado: (2022) -
Remote sensing-based time series models for malaria early warning in the highlands of Ethiopia
por: Midekisa, Alemayehu, et al.
Publicado: (2012)