Cargando…

The cortical structure of functional networks associated with age-related cognitive abilities in older adults

Age and cortical structure are both associated with cognition, but characterizing this relationship remains a challenge. A popular approach is to use functional network organization of the cortex as an organizing principle for post-hoc interpretations of structural results. In the current study, we...

Descripción completa

Detalles Bibliográficos
Autores principales: Kranz, Michael B., Voss, Michelle W., Cooke, Gillian E., Banducci, Sarah E., Burzynska, Agnieszka Z., Kramer, Arthur F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6150534/
https://www.ncbi.nlm.nih.gov/pubmed/30240409
http://dx.doi.org/10.1371/journal.pone.0204280
Descripción
Sumario:Age and cortical structure are both associated with cognition, but characterizing this relationship remains a challenge. A popular approach is to use functional network organization of the cortex as an organizing principle for post-hoc interpretations of structural results. In the current study, we introduce two complimentary approaches to structural analyses that are guided by a-priori functional network maps. Specifically, we systematically investigated the relationship of cortical structure (thickness and surface area) of distinct functional networks to two cognitive domains sensitive to age-related decline thought to rely on both common and distinct processes (executive function and episodic memory) in older adults. We quantified the cortical structure of individual functional network’s predictive ability and spatial extent (i.e., number of significant regions) with cognition and its mediating role in the age-cognition relationship. We found that cortical thickness, rather than surface area, predicted cognition across the majority of functional networks. The default mode and somatomotor network emerged as particularly important as they appeared to be the only two networks to mediate the age-cognition relationship for both cognitive domains. In contrast, thickness of the salience network predicted executive function and mediated the age-cognition relationship for executive function. These relationships remained significant even after accounting for global cortical thickness. Quantifying the number of regions related to cognition and mediating the age-cognition relationship yielded similar patterns of results. This study provides a potential approach to organize and describe the apparent widespread regional cortical structural relationships with cognition and age in older adults.