Cargando…

Binaural localization of musical pitch using interaural time differences in congenital amusia

Naturally occurring sounds are routinely periodic. The ability to phase-lock to such periodicity facilitates pitch perception and interaural time differences (ITDs) determination in binaural localization. We examined whether deficient pitch processing in individuals with congenital amusia (tone deaf...

Descripción completa

Detalles Bibliográficos
Autores principales: Hsieh, I-Hui, Chen, Ssc-Chen, Liu, Jia-Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6150538/
https://www.ncbi.nlm.nih.gov/pubmed/30240453
http://dx.doi.org/10.1371/journal.pone.0204397
_version_ 1783357007752855552
author Hsieh, I-Hui
Chen, Ssc-Chen
Liu, Jia-Wei
author_facet Hsieh, I-Hui
Chen, Ssc-Chen
Liu, Jia-Wei
author_sort Hsieh, I-Hui
collection PubMed
description Naturally occurring sounds are routinely periodic. The ability to phase-lock to such periodicity facilitates pitch perception and interaural time differences (ITDs) determination in binaural localization. We examined whether deficient pitch processing in individuals with congenital amusia (tone deafness) is accompanied by impaired ability to lateralize musical pitch at auditory periphery and memorize the location of pitch at the working memory level. If common mechanisms subserve processing of temporal-fine-structure based pitch and ITDs, then deficient processing of one feature should impair performance on the other. Thus, we measured ITD discrimination thresholds using an adaptive-tracking procedure for lateralizing musical tone pairs separated by different semitone intervals. Amusic individuals exhibited normal ITD thresholds comparable to those of matched controls, which were not affected by concurrent pitch changes. For working memory tasks, the amusic group performed significantly worse than matched controls in probed pitch recall, irrespective of the complexity level of concurrent variations along the ITD dimension of the melodic sequence. Interestingly, despite normal peripheral ITD thresholds, amusic individuals performed worse than controls in recalling probed locations of tones within a sequence of musical notes originating from different ITD-simulated locations. Findings suggest that individuals with congenital amusia are unimpaired in temporal fine-structure encoding to determine the location of musical pitch based on binaural ITD information at the auditory periphery. However, working memory for a sequence of sounds’ ITD-dependent spatial location is here shown to be impaired and dissociated from the pitch feature of sounds at the working memory level.
format Online
Article
Text
id pubmed-6150538
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-61505382018-10-08 Binaural localization of musical pitch using interaural time differences in congenital amusia Hsieh, I-Hui Chen, Ssc-Chen Liu, Jia-Wei PLoS One Research Article Naturally occurring sounds are routinely periodic. The ability to phase-lock to such periodicity facilitates pitch perception and interaural time differences (ITDs) determination in binaural localization. We examined whether deficient pitch processing in individuals with congenital amusia (tone deafness) is accompanied by impaired ability to lateralize musical pitch at auditory periphery and memorize the location of pitch at the working memory level. If common mechanisms subserve processing of temporal-fine-structure based pitch and ITDs, then deficient processing of one feature should impair performance on the other. Thus, we measured ITD discrimination thresholds using an adaptive-tracking procedure for lateralizing musical tone pairs separated by different semitone intervals. Amusic individuals exhibited normal ITD thresholds comparable to those of matched controls, which were not affected by concurrent pitch changes. For working memory tasks, the amusic group performed significantly worse than matched controls in probed pitch recall, irrespective of the complexity level of concurrent variations along the ITD dimension of the melodic sequence. Interestingly, despite normal peripheral ITD thresholds, amusic individuals performed worse than controls in recalling probed locations of tones within a sequence of musical notes originating from different ITD-simulated locations. Findings suggest that individuals with congenital amusia are unimpaired in temporal fine-structure encoding to determine the location of musical pitch based on binaural ITD information at the auditory periphery. However, working memory for a sequence of sounds’ ITD-dependent spatial location is here shown to be impaired and dissociated from the pitch feature of sounds at the working memory level. Public Library of Science 2018-09-21 /pmc/articles/PMC6150538/ /pubmed/30240453 http://dx.doi.org/10.1371/journal.pone.0204397 Text en © 2018 Hsieh et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Hsieh, I-Hui
Chen, Ssc-Chen
Liu, Jia-Wei
Binaural localization of musical pitch using interaural time differences in congenital amusia
title Binaural localization of musical pitch using interaural time differences in congenital amusia
title_full Binaural localization of musical pitch using interaural time differences in congenital amusia
title_fullStr Binaural localization of musical pitch using interaural time differences in congenital amusia
title_full_unstemmed Binaural localization of musical pitch using interaural time differences in congenital amusia
title_short Binaural localization of musical pitch using interaural time differences in congenital amusia
title_sort binaural localization of musical pitch using interaural time differences in congenital amusia
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6150538/
https://www.ncbi.nlm.nih.gov/pubmed/30240453
http://dx.doi.org/10.1371/journal.pone.0204397
work_keys_str_mv AT hsiehihui binaurallocalizationofmusicalpitchusinginterauraltimedifferencesincongenitalamusia
AT chensscchen binaurallocalizationofmusicalpitchusinginterauraltimedifferencesincongenitalamusia
AT liujiawei binaurallocalizationofmusicalpitchusinginterauraltimedifferencesincongenitalamusia