Cargando…
Density Functional Theory under the Bubbles and Cube Numerical Framework
[Image: see text] Density functional theory within the Kohn–Sham density functional theory (KS-DFT) ansatz has been implemented into our bubbles and cube real-space molecular electronic structure framework, where functions containing steep cusps in the vicinity of the nuclei are expanded in atom-cen...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6150645/ https://www.ncbi.nlm.nih.gov/pubmed/29944363 http://dx.doi.org/10.1021/acs.jctc.8b00456 |
Sumario: | [Image: see text] Density functional theory within the Kohn–Sham density functional theory (KS-DFT) ansatz has been implemented into our bubbles and cube real-space molecular electronic structure framework, where functions containing steep cusps in the vicinity of the nuclei are expanded in atom-centered one-dimensional (1D) numerical grids multiplied with spherical harmonics (bubbles). The remainder, i.e., the cube, which is the cusp-free and smooth difference between the atomic one-center contributions and the exact molecular function, is represented on a three-dimensional (3D) equidistant grid by using a tractable number of grid points. The implementation of the methods is demonstrated by performing 3D numerical KS-DFT calculations on light atoms and small molecules. The accuracy is assessed by comparing the obtained energies with the best available reference energies. |
---|