Cargando…

Techno-Functional Properties of Crude Extracts from the Green Microalga Tetraselmis suecica

[Image: see text] A mild fractionation process to extract functional biomolecules from green microalgae was implemented. The process includes bead milling, centrifugation, and filtration with several membrane cut-offs. For each fraction, the corresponding composition was measured, and the surface ac...

Descripción completa

Detalles Bibliográficos
Autores principales: Garcia, E. Suarez, van Leeuwen, J. J. A., Safi, C., Sijtsma, L., van den Broek, L. A. M., Eppink, M. H. M., Wijffels, R. H., van den Berg, C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6150664/
https://www.ncbi.nlm.nih.gov/pubmed/29976070
http://dx.doi.org/10.1021/acs.jafc.8b01884
Descripción
Sumario:[Image: see text] A mild fractionation process to extract functional biomolecules from green microalgae was implemented. The process includes bead milling, centrifugation, and filtration with several membrane cut-offs. For each fraction, the corresponding composition was measured, and the surface activity and gelation behavior were determined. A maximum protein yield of 12% was obtained in the supernatant after bead milling and between 3.2 and 11.7% after filtration. Compared to whey protein isolate, most of the algae fractions exhibited comparable or enhanced functionality. Surface activity for air–water and oil–water interfaces and gelation activities were notably superior for the retentate fractions compared to the permeates. It is proposed that such functionality in the retentates is due to the presence of hydrophobic compounds and molecular complexes exhibiting a similar behavior as Pickering particles. We demonstrated that excellent functionality can be obtained with crude fractions, requiring minimum processing and, thus, constituting an interesting option for commercial applications.