Cargando…
ECPred: a tool for the prediction of the enzymatic functions of protein sequences based on the EC nomenclature
BACKGROUND: The automated prediction of the enzymatic functions of uncharacterized proteins is a crucial topic in bioinformatics. Although several methods and tools have been proposed to classify enzymes, most of these studies are limited to specific functional classes and levels of the Enzyme Commi...
Autores principales: | Dalkiran, Alperen, Rifaioglu, Ahmet Sureyya, Martin, Maria Jesus, Cetin-Atalay, Rengul, Atalay, Volkan, Doğan, Tunca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6150975/ https://www.ncbi.nlm.nih.gov/pubmed/30241466 http://dx.doi.org/10.1186/s12859-018-2368-y |
Ejemplares similares
-
Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases
por: Rifaioglu, Ahmet Sureyya, et al.
Publicado: (2018) -
DEEPred: Automated Protein Function Prediction with Multi-task Feed-forward Deep Neural Networks
por: Sureyya Rifaioglu, Ahmet, et al.
Publicado: (2019) -
Transfer learning for drug–target interaction prediction
por: Dalkıran, Alperen, et al.
Publicado: (2023) -
DEEPScreen: high performance drug–target interaction prediction with convolutional neural networks using 2-D structural compound representations
por: Rifaioglu, Ahmet Sureyya, et al.
Publicado: (2020) -
CROssBAR: comprehensive resource of biomedical relations with knowledge graph representations
por: Doğan, Tunca, et al.
Publicado: (2021)