Cargando…
Anti-Inflammatory Pyranochalcone Derivative Attenuates LPS-Induced Acute Kidney Injury via Inhibiting TLR4/NF-κB Pathway
Treatment of septic acute kidney injury (AKI) has still been beyond satisfaction, although anti-inflammatory therapy is beneficial for sepsis-induced AKI. Compound 5b was derived from natural pyranochalcones and exhibited potent anti-inflammatory activity in adjuvant-induced arthritis. In this study...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6151422/ https://www.ncbi.nlm.nih.gov/pubmed/28994737 http://dx.doi.org/10.3390/molecules22101683 |
Sumario: | Treatment of septic acute kidney injury (AKI) has still been beyond satisfaction, although anti-inflammatory therapy is beneficial for sepsis-induced AKI. Compound 5b was derived from natural pyranochalcones and exhibited potent anti-inflammatory activity in adjuvant-induced arthritis. In this study, we aimed to investigate the renoprotective effects and potential mechanism of 5b against lipopolysaccharide (LPS)-induced AKI. C57BL/6 mice and human renal proximal tubule cell line (HK-2 cell) were treated with LPS, respectively. Compound 5b was orally administrated at a dose of 25 mg/kg/day for 5 days before LPS (10 mg/kg) intraperitoneal injection. Cells were pretreated with 25 μg/mL 5b for 30 min before LPS (1 μg/mL) treatment. Pretreatment with 5b markedly alleviated tubular injury and renal dysfunction in LPS-induced AKI. The expression of IL-1β, IL-6, and TNF-α both in renal tissue of AKI mice and in the LPS-stimulated HK-2 cell culture medium were reduced by 5b treatment (p < 0.05). The results of immunohistochemistry staining showed that 5b reduced the expression of NF-κB p65 in kidneys. Similarly, 5b decreased the LPS-induced levels of NF-κB p65 and TLR4 proteins in kidneys and HK-2 cells. These data demonstrated that a potent pyranochalcone derivative, 5b, exhibited renoprotective effect against LPS-induced AKI, which was associated with anti-inflammatory activity by inhibiting the TLR4/NF-κB pathway. |
---|