Cargando…

Inhibitory Effect of Selaginellins from Selaginella tamariscina (Beauv.) Spring against Cytochrome P450 and Uridine 5′-Diphosphoglucuronosyltransferase Isoforms on Human Liver Microsomes

Selaginella tamariscina (Beauv.) has been used for traditional herbal medicine for treatment of cancer, hepatitis, and diabetes in the Orient. Numerous bioactive compounds including alkaloids, flavonoids, lignans, and selaginellins have been identified in this medicinal plant. Among them, selaginell...

Descripción completa

Detalles Bibliográficos
Autores principales: Heo, Jae-Kyung, Nguyen, Phi-Hung, Kim, Won Cheol, Phuc, Nguyen Minh, Liu, Kwang-Hyeon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6151550/
https://www.ncbi.nlm.nih.gov/pubmed/28934153
http://dx.doi.org/10.3390/molecules22101590
Descripción
Sumario:Selaginella tamariscina (Beauv.) has been used for traditional herbal medicine for treatment of cancer, hepatitis, and diabetes in the Orient. Numerous bioactive compounds including alkaloids, flavonoids, lignans, and selaginellins have been identified in this medicinal plant. Among them, selaginellins having a quinone methide unit and an alkylphenol moiety have been known to possess anticancer, antidiabetic, and neuroprotective activity. Although there have been studies on the biological activities of selaginellins, their modulatory potential of cytochrome P450 (P450) and uridine 5′-diphosphoglucuronosyltransferase (UGT) activities have not been previously evaluated. In this study, we investigated the drug interaction potential of two selaginellins on ten P450 isoforms (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 2J2 and 3A) and six UGT isoforms (UGT1A1, 1A3, 1A4, 1A6, 1A9 and 2B7) using human liver microsomes and liquid chromatography-tandem mass spectrometry. Selaginellin and selaginellin M had high inhibitory potential for CYP2C8-mediated amodiaquine O-demethylation with IC(50) values of 0.5 and 0.9 μM, respectively. Selaginellin and selaginellin M also showed medium inhibitory potential against CYP2C9, CYP2J2, UGT1A1, and UGT1A3 (1 μM < IC(50) < 5 μM). These two selaginellins had low inhibitory potential against CYP1A2, CYP2A6, CYP2E1, and UGT1A6 (IC(50) > 25 μM). This information might be helpful to predict possible drug interaction potential of between selaginellins and co-administered drugs.